
Behaviour-Driven

Development

Writing software that matters

Dan North – DRW

My name is Dan

I am a developer

I am a coach

I am your guide

© Dan North, DRW 2

Introduction: Software

that doesn’t matter

© Dan North, DRW 3

Failure modes – a field guide

The project comes in late
...or costs too much to finish

The application does the wrong thing

It is unstable in production

It breaks the rules

The code is impossible to work with

© Dan North, DRW 4

How we deliver software

© Dan North, DRW 5

P
la

n
n

in
g

A
n

al
ys

is

D
es

ig
n

C
o

d
e

Te
st

D
ep

lo
y

t

Why do we do this?

The exponential change curve
P

la
n

n
in

g

A
n

al
ys

is

D
es

ig
n

C
o

d
e

Te
st

D
ep

lo
y

© Dan North, DRW 6

$

t

The exponential change curve

© Dan North, DRW 7

We fear this...
$

tso we do
this...

which
reinforces
this!

If only we could deliver better...

Deliver features rather than modules

Prioritise often, change often

Only focus on high-value features

Flatten the cost of change

Adapt to feedback

Learn!

© Dan North, DRW 8

What we would need

Adaptive planning

Streaming requirements

Evolving design

Code we can change

Frequent code integration

Run all the regression tests often

Frequent deployments

© Dan North, DRW 9

Part 1: Defining BDD

© Dan North, DRW 10

A loose definition of BDD

“Behaviour-driven development is

about implementing an application

by describing its behaviour from

the perspective of its stakeholders”

- Me

© Dan North, DRW 11

A more formal definition of BDD

“BDD is a second-generation,
outside-in, pull-based, multiple-
stakeholder, multiple-scale, high-
automation, agile methodology.

“It describes a cycle of interactions
with well-defined outputs, resulting
in the delivery of working, tested
software.”

© Dan North, DRW 12

BDD is derivative

Derives from:

XP, especially TDD and CI

Acceptance Test-Driven Planning

Lean principles

Domain-Driven Design

Influenced by:

Neurolinguistic Programming (NLP)

Systems Thinking

© Dan North, DRW 13

...second generation...

Who is this application for?

© Dan North, DRW 14

Vision

(or Purpose)

Outcome

Feature set

Features...

Stories...

Scenarios...

Outcome

Feature set

Features...

Stories...

...

Features...

...

Feature set

...

Outcome

Feature set

...outside-in...

Everything has a diminishing return

Don’t create more detail than we can consume

Analysis, design, estimation, planning, process

Or more technology than we need

Don’t solve a problem we don’t have yet

Any more detail is waste, any less is risk!

Focus on deliberate discovery

Principle 1: Enough is enough

© Dan North, DRW 15

...pull-based...

Who is the stakeholder?

Anyone who cares!

…about how much the application costs

…about what it does and how to use it

…about whether it hammers the network

…about whether it is secure

…about whether it complies with the law

…about how easy it is to deploy and diagnose

…about how well it is written and architected

…and how easy it is to change

© Dan North, DRW 16

...multiple-stakeholder...

Two flavours of stakeholder

Core stakeholders

the people with the vision

Incidental stakeholders

the “non-functional” stakeholders

the people working to achieve the outcomes

Principle 2: Deliver stakeholder value

© Dan North, DRW 17

...multiple-stakeholder...

BDD works on multiple levels

Stories and scenarios describe
application-level behaviour

Code examples describe code-level
behaviour

Wider scope is possible
e.g. Behaviour-driven “guerrilla” SOA

Principle 3: It’s all behaviour

© Dan North, DRW 18

...multiple-scope...

Automation creates rapid feedback

CI ensures the application is always releasable

Requires comprehensive automated acceptance tests

And that your CI environment is similar to the real one

CI and SCM principles apply elsewhere too

You can version your database changes

And automate the roll-forward and roll-back

Some features require on-going monitoring

e.g. Performance testing or penetration testing

© Dan North, DRW 19

...high automation...

The Agile Manifesto

People and interactions over process and tools

Collaboration over contract negotiation

Working software over documentation

Adapting to change over following a plan

© Dan North, DRW 20

...agile methodology.

The XP values

Communication

Simplicity

Feedback

Courage

Respect

© Dan North, DRW 21

...agile methodology.

It doesn’t end at “dev complete”

Use your build process for release

Then the path to production is tested

Aim for “deterministically boring”

Engage the downstream stakeholders

A release shouldn’t come as a surprise

Software has zero value until it is live!

© Dan North, DRW 22

...delivery....

Recap – three principles of BDD

1. Enough is enough

2. Deliver stakeholder value

3. It’s all behaviour

© Dan North, DRW 23

Part 2: How BDD works

© Dan North, DRW 24

BDD in six pictures

© Dan North, DRW 25

...cycle of interactions...

The roles in a BDD team

The core stakeholders

The incidental stakeholders

The analysts (or BAs)

The testers (or QAs)

The developers

The project manager (or Boss)

© Dan North, DRW 26

...cycle of interactions...

What’s in a story?

A story is a unit of delivery

© Dan North, DRW 27

As an Anaesthetist

I want to view the Patient’s surgical history

So that I can choose the most suitable gas

Story 28 - View patient details

...clearly-defined outputs...

Focus on the value

© Dan North, DRW 28

In order to choose the most suitable gas

an Anaesthetist

wants to view the Patient’s surgical history

Story 28 - View patient details

...clearly-defined outputs...

Focus on the value

© Dan North, DRW 29

In order to choose the most suitable gas

an Anaesthetist

wants other Anaesthetists to log the

Patient’s surgical history for later retrieval

Story 29 – Log patient details

...clearly-defined outputs...

Define scope using scenarios

Scenario – existing patient with history

Given we have a patient on file

And the patient has had previous surgery

When I request the Patient’s surgical history

Then I see all the previous treatments

© Dan North, DRW 30

...clearly-defined outputs...

Agree on “done”

Automate the scenarios

Make each step executable

Given we have a patient on file

In Java:

@Given(“we have a patient on file”)
public void createPatientOnFile() {

// ...
}

In Ruby:

Given “we have a patient on file” do
...

end

© Dan North, DRW 31

...clearly-defined outputs...

Code-by-example to implement

Also known as TDD

Start with the edges, with what you know

Implement outermost objects and operations

Discover collaborators, working inwards
and mock them out for now

Repeat until “Done”

If the model doesn’t “feel” right, experiment!

© Dan North, DRW 32

...clearly-defined outputs...

Code-by-example example

© Dan North, DRW 33

Scenario
Examples

Scenario

...clearly-defined outputs...

Good tools can help here

Cucumber or JBehave for stories

RSpec, XUnit for code examples

Mockito, Mocha, Moq for mocking

Be opinionated rather than dogmatic
with the tooling!

© Dan North, DRW 34

...clearly-defined outputs...

We keep the development artifacts

Examples become code tests

…and documentation

Scenarios become acceptance tests

which become regression tests

Automation is key

© Dan North, DRW 35

...clearly-defined outputs...

Part 3: Getting the

words right

© Dan North, DRW 36

© Dan North, DRW 37

Domain-driven design 101

Model your domain

...and identify the core domain

Create a shared language

...and make it ubiquitous

Determine the model’s bounded context

...and think about what happens at the edges

© Dan North, DRW 38

The map is not the territory

There are many kinds of model

Each is useful in different contexts

There is no “perfect” domain model

So don’t try to create one!

Domain modelling takes practice

© Dan North, DRW 39

A legacy domain modelling example

© Dan North, DRW 40

Map<int, Map<int, int>>

portfolioIdsByTraderId;

if (portfolioIdsByTraderId.get(trader.getId())
.containsKey(portfolio.getId())) {...}

becomes:

if (trader.canView(portfolio)) {...}

© Dan North, DRW 41

You want to retrieve patient records

in Java, using Hibernate

so you define
class HibernatePatientRecordRepository {

What if your IDE did domain-specific fonts?

We often manage multiple domains

Writing effective stories

Each story represents (part of) a feature

and each feature belongs to a stakeholder

Each stakeholder represents a domain

even the incidental stakeholders

Mixing domains within a scenario leads to brittle tests

What exactly is the scenario verifying?

What does it mean when things change?

“What does the stakeholder want in this story?”
© Dan North, DRW 42

Part 4: Other topics

© Dan North, DRW 43

Getting started with BDD

Lasting change involves values and beliefs

Introducing any change is disruptive

We need to understand how this works

© Dan North, DRW 44

Getting started with BDD

Values and beliefs: the Dilts model

© Dan North, DRW 45

?

Identity

Values and
beliefs

Capabilities

Behaviour

Environment

Getting started with BDD

Introducing change: the Satir model

© Dan North, DRW 46

Getting started with BDD

Lasting change involves values and beliefs

Introducing any change is disruptive

Use small increments, find quick wins

Identify suitable pilots, nurture them

BDD is ideally suited to this

© Dan North, DRW 47

BDD on legacy systems

“Working effectively with legacy code” –
Michael Feathers

Introduce automation early
SCM is vital, build is vital, CI is critical

Test your assumptions
Automated tests will give you confidence

Use the tests to build out a domain model

Especially around integration points
Triple benefit: assurance, stub and regression

© Dan North, DRW 48

BDD in the large

“No more than 10”

(with thanks to Linda Rising)

Partition work by functional areas

- with clear interfaces and boundaries

Enable each team to be fully autonomous

- avoid the “Testing Centre of Excellence”

Have a single codebase and a single build

© Dan North, DRW 49

Distributed BDD

Same as for large teams, plus...

Have multiple stand-ups to “pass the baton”

Use technology to shorten the distance
- video-conferencing, digital whiteboard, Skype

Be aware of cultural disconnects

Exaggerated Collaboration

© Dan North, DRW 50

Conclusion

© Dan North, DRW 51

Software that matters

...has tangible stakeholder value

...is delivered on time, incrementally

...is easy to deploy and manage

...is robust in production

...is easy to understand and communicate

BDD is a step in that direction

© Dan North, DRW 52

Thank you

dnorth@drwuk.com

@tastapod

http://dannorth.net

http://jbehave.org

http://rspec.info

© Dan North, DRW 53

Bibliography

Extreme Programming explained (2nd edition)

- Kent Beck

Domain-Driven Design - Eric Evans

The Art of Systems Thinking

and

The Way of NLP - Joseph O’Connor

© Dan North, DRW 54

