
Do you really get

class loaders?

Jevgeni Kabanov
Founder & CTO of ZeroTurnaround

What do I do?

Creator and core developer of JRebel

JRebel maps your project workspace directly

to a running application, watches the changes

you make to classes and resources, then

intelligently reflects them in your application.

“How to eliminate builds, redeploys and

gain 3-7 weeks a year?”

Lightning talk later today, find out more

3-7 weeks a year based on survey results

30 day trial,

just $149 per

developer :)

JFokus attendees get

a free license!

www.jrebel.com/jfoku

s

To create JRebel we…

Hooked into class loading on the JVM

level

Integrated with the class loading

mechanism in more than 10 different

servers

Solved hundreds of issues connected to

class loading

Learned a lot more about class loaders

than we wanted to 

Overview

Basics

What is class loading?

How was it meant to work?

Problems and solutions

How do class loaders leak?

OSGi, Spring dm, JBoss and others???

Conclusions

BASICS

Class loader API

public abstract class ClassLoader {

public Class loadClass(String name);

protected Class defineClass(byte[] b);

public URL getResource(String name);

public Enumeration getResources(String name);

public ClassLoader getParent()

}

Class loading

public class A {

public void doSmth() {

B b = new B();

b.doSmthElse();

}

}

Causes a call to

A.class.getClassLoader().loadClass(“B”);

Delegation

Class loaders have a parent class loader

The parent is usually consulted first

Avoids loading same class several times

However in a Java EE web module local

classes are searched first

In Java EE each WAR module of an EAR

gets its own class loader

This allows separate namespaces for

applications in same container

Java EE Delegation

Container

App1.ear

WAR1 WAR2

App2.ear

WAR3

App3.ear

WAR4

PROBLEMS AND SOLUTIONS

No class found

Variants

ClassNotFoundException

ClassNoDefFoundException

Helpful

IDE class lookup (Ctrl+Shift+T in Eclipse)

find *.jar -exec jar -tf '{}' \; | grep MyClass

URLClassLoader.getUrls()

Container specific logs

Wrong class found

Variants

IncompatibleClassChangeError

AbstractMethodError

NoSuch(Method|Field)FoundError

ClassCastException, IllegalAccessError

Helpful

-verbose:class

ClassLoader.getResource()

javap -private MyClass

More than one class found

Variants

LinkageError (class loading constraints

violated)

ClassCastException, IllegalAccessError

Helpful

-verbose:class

ClassLoader.getResource()

More than one class found

Web ClassLoader

Shared ClassLoader

Util3

Util3

Factory3

Test3

Util3 u = (Util3) Factory3.instanceUntyped();

Factory3.instanceUntyped();new Util3()ClassCastException

More than one class found

Web ClassLoader

Shared ClassLoader

Util3

Util3

Factory3

Test4

Factory3.instance().sayHello();

Factory3.instance();new Util3() LinkageError

More than one class found

Web ClassLoader

Shared ClassLoader

Util3

Util3

Factory3

Test5

Util3 u = (Util3) Factory3.instancePackage();

Factory3.instancePackage();new Util3()IllegalAccessError

Reloading an Object

MyObject

MyObject.class

OldClassLoader NewClassLoader

MyObject.class

MyObject
Recreate the object

Leaking ClassLoaders

Class1.class

ClassLoader

Class2.class Class3.class

Static

Fields

Static

Fields

Static

Fields

Leaking ClassLoaders

Leak Leak Leak

Leak.class Leak.class Leak.class

ExampleFactory$1 ExampleFactory$1 ExampleFactory$1

Example.class Example.class Example.class

STATE OF THE ART

Hierarchy is not enough?

Isolation

Different versions of the same library

Performance

Class lookup is very slow

Restricted

Why siblings can’t see each other’s classes?

OSGi, JBoss, NetBeans and others

implement a different system

The Modern Way

Each JAR has own class loader

All class loaders are siblings, with one

central repository

Each JAR explicitly declares

Packages it exports

Packages it imports

Repository can find relevant class loaders

by package

Modern Filtering
class MClassLoader extends ClassLoader {

// Initialized during startup from imports

Set<String> imps;

public Class loadClass(String name) {

String pkg = name.substring(0,

name.lastIndexOf('.'));

if (!imps.contains(pkg))

return null;

return repository.loadClass(name);

}

}

Modern Lookup
class MRepository {

// Initialized during startup from exports

Map<String,List<MClassLoader>> exps;

public Class loadClass(String name) {

String pkg = name.substring(0,

name.lastIndexOf('.'));

for (MClassLoader cl : exps.get(pkg)) {

Class result = cl.loadLocalClass(name);

if (result != null) return result;

}

return null;

}

}

Troubleshooting

The same tricks also work with Modern

class loading systems

ClassLoader.getResource();

-verbose:class

Often can be supplemented with custom

tools

Need to think in terms of export/import in

addition to classpath

Looking at the pseudocode can help

Problems

Too restrictive

Import is a one-way street

If you want to use Hibernate, you import it, but

it cannot access your classes

Easy to leak

Any references between class loaders are

leaks waiting to happen

Deadlocks

JVM enforces a global lock on loadClass()

Conclusions

The trick of troubleshooting class loaders

is understanding how they work :)

Modern systems add a level of

complexity on top of an abstraction that

nobody gets to begin with

When redeploying or reloading classes

leaking is easy and leads to OOM

We need better tools to troubleshoot class

loaders!

