Good
Object-
Oriented
Development

Kevlin Henney

kevlin@curbralan.com
@KevlinHenney

SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED

SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

Frank Buschmann
Kevlin Henney

Douglas C. Schmidt

B

—a SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patierns and Pattern Languages

Y5

,msﬁ@
] -1.5] = Lo

ARasld»
£ B

DYSHE
SrAT

| ¥y
-

ofef

TLLIY
e ok

D

Collective Wisdom
from the Experts

Programmer

O’REILLY" Edited by Kevlin Henney

See http://programmer.97things.oreilly.com
(also http://itr.im/97tepsk and http://tinyurl.com/97tepsk)

and follow @97TEPSK

Gre .a,:a;_,m o and Mitchell

- Ob_]ect Rel:m&ws in Psychoanaiyﬁc Theory -

Harvard ¥ 2

e i . - m

There is one consequence of considering code as software design
that completely overwhelms all others. It is so important and so
obvious that it is a total blind spot for most software
organizations. This is the fact that software is cheap to build.
Jack Reeves

All architecture is design but not all design 1s architecture.

Architecture represents the significant design decisions that

shape a system, where significant is measured by cost of change.
Grady Booch

If you think good architecture is expensive, try bad architecture.
Brian Foote and Joseph Yoder

encapsulate enclose (something) in or as if in a capsule.
express the essential feature of (someone or something) succinctly.

enclose (a message or signal) in a set of codes which allow use by or
transfer through different computer systems or networks.

provide an interface for (a piece of software or hardware) to allow or
simplify access for the user.

The New Oxford Dictionary of English

Affordances

» The degrees of freedom a design
supports in (mis)use
= Not all affordances are desirable or
intended

* Encapsulation involves the reduction
of unwanted affordances
= SO, try to avoid offering interfaces that

are clumsy to use or that make it easy
to do the wrong thing

THE AMAZING
% BADGER SETT

Bl We made it 10 times as big as

il real! So vou can oxT—

under :thllul and 1

GET THE NEW LIFE!

for CHEERFUL LIFE

scheme

B, : \ N/ ')T Conct r Lt "N c—
e | ' A 08007831423 b

WWw.ccscheme.org.uk

public class RecentlyUsedList

{
public void add(String newItem)

{

list.remove (newItem);
list.add(0, newItem);

}
public ArrayList<String> getList()

{

return list;

}
public void setList(ArrayList<String> newlList)

{
}

private ArrayList<String> list;

list = newList;

RecentlyUsedList 1ist = new RecentlyUsedList():
list.setList(new ArrayList<String>());
list.add("Hello, World!");:

assert list.getList().size() == 1;
list.getList().clear():

assert list.getList().isEmpty();

Sleep all day. Party all night. Never grow old. Never die.
 Its fun to be a vampire.

Don't ever invite a vampire

into you{/hgliseﬂygufsgly boy.

It »renders‘-you power: ess.

public class RecentlyUsedList

{
public boolean isEmpty()

{
}

public int size()

{

}
public void add(String newItem)

{

return list.isEmpty();

return list.size();

list.remove(newItem);
list.add(0, newItem);
}

public void clear()

{
}

private List<String> list = new ArraylList<String>();

list.clear();

RecentlyUsedList 1ist = new RecentlyUsedList():
list.add("Hello, World!");

assert list.size() == 1;

list.clear();

assert list.isEmpty();

public class RecentlyUsedList

{
public void add(String newItem)

{

list.remove(newItem);
list.add(9, newItem);

}
public String get(int index)

{

return list.get(index);

}

public class RecentlyUsedList

{
public void add(String newItem)

{

list.remove(newItem);
list.add(newItem);

}
public String get(int index)

{
}

return list.get(size() - index - 1);

{

Accloental
comPLex'Ltg from

public class RecentlyUsedList UANECESSArY)

public void add(String newItem) laziness

{
if(list == null)
list = new ArrayList<String>();
else
list.remove (newItem);
list.add(newItem);
}

public int size()

{

}
public String get(int index)

{

return Tist == null ? 0 : list.size();

if(list == null)
throw new IndexOutOfBoundsException();
return list.get(size() — index - 1);

}

private List<String> list;

Refactoring (noun): a change made to the
internal structure of software to make it
easier to understand and cheaper to modify
without changing its observable behavior.

Refactor (verb): to restructure software by
applying a series of refactorings without
changing the observable behavior of the
software.

Martin Fowler, Refactoring

public class RecentlyUsedList

{

public RecentlyUsedList()

{

list = new ArrayList<String>();

public void add(String newItem)

}

if(1ist.contains(newItem))

{
int position;
position = Tist.index0f(newItem);
string existingItem;
existingItem = list.get(position);
list.remove(position);
list.add(0, existingItem);

}

else

{
list.add(0, newItem);

}

public int size()

{

int size;
size = list.size();
return size;

public String get(int index)

{

}

int position;
position = 0;
for(String value : Tist)

if(position == index)

return value;
++position;

throw new IndexOutOfBoundsException();

private List<String> list;

public class RecentlyUsedList

{

public void add(String newItem)

{ list.remove(newItem);
list.add(newItem);

;ublic int size()

{ return list.size();

;ublic String get(int index)

; return list.get(size() - index — 1);

private List<String> list = new ArrayList<String>();

Construction Time Again

= A constructor is...

= A special method for setting an
object's fields to some Initial values?

= A special method for establishing a
new object in a correct state?

= A transactional method for establishing
a hew and valid state of the system?

* Try to avoid providing constructors
that don't give useful, usable objects

The Contract Metaphor

= A contract defines a relationship by
a set of expectations and constraints
= A class can be seen in terms of a
client—supplier relationship, with the
client dependent on the public

Interface and the supplier offering the
encapsulated implementation

* The contractual view reinforces the
public—private separation of a class

postcondition:

returns size() == given:
expectedSize = size() +

(contains(newlItem) ? 0 : 1)
postcondition:
get(0).equals(newltem) &&
size() == expectedSize

postcondition:
returns >= 0

public clas. Recentlyl sedList

{ precondition:

public boo.lean isEmr”)
public int sizel;

public void add(String ne-™*
public String get(int index) ... |r’eturns != null
public boolean contains(String item) ...

public void clear:)

index >= 0 && index < size()
postcondition:

postcondition:
returns whether
get (index) .equals(item)

postcondition: for any index in [0..size())

isEmpty ()

given:

expectedSize = size() + (contains(newItem) ? 0 : 1)
precondition:

newltem != null

postcondition:

get(0).equals(newltem) && size() == expectedSize

public class RecentlyUsedList

{
public void add(String newItem) ...

public String get(int index) .

precondition:
index >= 0 && index < size()
postcondition:

What would a class inheriting from
RecentlyUsedList be permitted and
disallowed from doing?

returns !'= null

Other Contract Approaches

= Design by Contract can be useful,
but has limitations
* The specification of Object.equals Is

assertion-based but not method-
centric

» Operational complexity, re-entrancy,
resource usage, etc., often need to be
part of the contract

= Tests can be used to define a contract

Everybody knows that TDD stands for Test Driven Development.
However, people too often concentrate on the words “Test" and
"Development” and don't consider what the word "Driven” really
implies. For tests to drive development they must do more than
just test that code performs its required functionality: they must
clearly express that required functionality to the reader. That is,
they must be clear specifications of the required functionality.

Tests that are not written with their role as specifications in mind
can be very confusing to read. The difficulty in understanding
what they are testing can greatly reduce the velocity at which a
codebase can be changed.

Nat Pryce and Steve Freeman
“Are Your Tests Really Driving Your Development?”

{

@Test
public void test()

RecentlyUsedList 1ist = new RecentlyUsedList();

assertEquals(0, list.size());
list.add("Aardvark") ;
assertEquals(l, list.size());
assertEquals("Aardvark", list.get(0)):
list.add("Zebra");
list.add("Mongoose") ;
assertEquals(3, list.size());
assertEquals("Mongoose", list.get(0)):
assertEquals("Zebra", list.get(1));
assertEquals("Aardvark", list.get(2)):
list.add("Aardvark") ;
assertEquals(3, list.size());
assertEquals("Aardvark", list.get(0));
assertEquals("Mongoose", list.get(1)):
assertEquals("Zebra", list.get(2));
bool thrown;
try
{

list.get(3);

thrown = false;

catch(IndexOutOfBoundsException caught)
{

}

assertTrue(thrown) ;

thrown = true;

{

}

{

}

{

OTest
public void testl()

RecentlyUsedList 1ist = new RecentlyUsedList();
assertEquals(0, list.size());
list.add("Aardvark") ;

assertEquals(l, list.size());
assertEquals ("Aardvark", 1ist.get(0));
list.add("Zebra");
list.add("Mongoose") ;

assertEquals(3, list.size());
assertEquals("Mongoose", 1ist.get(0));
assertEquals("Zebra”, list.get(1));
assertEquals ("Aardvark", list.get(2));

@Test
public void test2()

RecentlyUsedList 1ist = new RecentlyUsedList();
assertEquals(0, Tist.size()):
list.add("Aardvark");

assertEquals(1l, Tist.size()):
assertEquals("Aardvark", list.get(0));
list.add("Zebra");
list.add("Mongoose") ;

assertEquals(3, list.size()):
assertEquals("Mongoose", list.get(0));
assertEquals("Zebra", list.get(1)):
assertEquals("Aardvark", list.get(2));
list.add("Aardvark");

assertEquals(3, list.size());
assertEquals ("Aardvark", 1ist.get(0));
assertEquals("Mongoose", list.get(1l));
assertEquals("Zebra", list.get(2)):

@Test
public void test3()

RecentlyUsedList 1ist = new RecentlyUsedList();
assertEquals(0, Tist.size()):

- e s muafvim_ I _ _1.m\©™

OTest

public void constructor()

{
RecentlyUsedList 1ist = new RecentlyUsedList();
assertEquals (0, list.size());

}

@Test

public void add()

{
RecentlyUsedList 1ist = new RecentlyUsedList();
list.add("Aardvark")
assertEquals(1l, list.size());
list.add("Zebra");
list.add("Mongoose") ;
assertEquals(3, list.size());
list.add("Aardvark") ;
assertEquals(3, list.size());

}

@Test

public void get()

{
RecentlyUsedList 1ist = new RecentlyUsedList();
list.add("Aardvark");
list.add("Zebra");
list.add("Mongoose") ;
assertEquals("Mongoose", list.get(0));
assertEquals("Zebra", list.get(1));
assertEquals("Aardvark", list.get(2));
list.add("Aardvark");
assertEquals("Aardvark", list.get(0));
assertEquals("Mongoose", list.get(1));
assertEquals("Zebra", list.get(2));
bool thrown;
try
{

list.get(3);
thrown = false;

}
catch(IndexOutOfBoundsException caught)
{

thrown = true;

asserTrue(thrown) ;

Cownstructor

@Test
public void initialListIsEmpty()

{
RecentlyUsedList 1ist = new RecentlyUsedList();

assertEquals(0, list.size());
}
OTest
public void addition0fSingleItemToEmptyListIsRetained()
{
RecentlyUsedList 1ist = new RecentlyUsedList();
list.add("Aardvark");

assertEquals(1l, list.size());
assertEquals("Aardvark", list.get(0));
}
@Test
public void additionOfDistinctItemsIsRetainedInStackOrder ()
{
RecentlyUsedList 1ist = new RecentlyUsedList();
list.add("Aardvark");
list.add("Zebra");
list.add("Mongoose") ;

assertEquals(3, list.size());
assertEquals("Mongoose", list.get(0));
assertEquals("Zebra", list.get(1));
assertEquals("Aardvark", list.get(2));
}
@Test
public void duplicateItemsAreMovedToFrontButNotAdded ()
{
RecentlyUsedList 1ist = new RecentlyUsedList();
list.add("Aardvark");
list.add("Mongoose") ;
list.add("Aardvark");

assertEquals(2, list.size());
assertEquals("Aardvark", list.get(0));
assertEquals("Mongoose", list.get(1));

}
@Test (expected=IndexOutOfBoundsException.class)
public void outOfRangeIndexThrowsException()
{
RecentlyUsedList 1ist = new RecentlyUsedList();
list.add("Aardvark");
list.add("Mongoose") ;
list.add("Aardvark");
list.get(3);

nttial List Ls emp’cg

Addition of single ttem to
empty List is retained

Addition of distinet items is
retatned Ln stack order

Dupt’wate Ltemes are moved to
front but not adoded

out of range inoex throws
except’ww

A test is not a unit test if:

= |t talks to the database
It communicates across the network
It touches the file system
It can't run at the same time as any of your other unit tests
You have to do special things to your environment (such as
editing config files) to run it.

Tests that do these things aren't bad. Often they are worth
writing, and they can be written in a unit test harness. However,
it is important to be able to separate them from true unit tests
so that we can keep a set of tests that we can run fast whenever
we make our changes.

Michael Feathers, "A Set of Unit Testing Rules"

Wrapped

External

Wrapper

Decoupled

Usage
Interface

External
Wrapper

Doubled

Usage
Interface

Pl

wSINGLETON
gl Ut rotich Wiy
Bt gt o/ "/ Juffloin

Parameterize
from Above

i

!

Hardwire
from Below

If you have a procedure with
ten parameters, you probably

missed some.

Alan Perlis

Parameter Objects

» Many kinds of parameter objects...

= Context objects are for passing
contextual information around

» Data transfer objects (DTOs) are for
batching property gueries or changes

» Value objects often start life as simple
parameter objects

= Stability of the whole Is greater than
the stability of the individual parts

Client

A4
Expression

Context

Terminal NonTerminal
Expression Expression

evaluate evaluate

Client

1 1
\ 4 A4

Expression

Context

Terminal NonTerminal
Expression Expression

evaluate evaluate

Client

4 Interpreter

K

Context

Terminal
Expression

NonTerminal ‘
o

evaluate evaluate

generalisation

commonality

!
i

specialisation

The process of moving from the specific to the
general is both necessary and perilous. A doctor
could, with some statistical support, generalize
about men of a certain age and weight. But what
if generalizing from other traits — such as high
blood pressure, family history, and smoking —

saved more lives? Behind each generalization is a
choice of what factors to leave in and what
factors to leave out, and those choices can prove
surprisingly complicated.

Malcolm Gladwell
"Troublemakers", What the Dog Saw

Sandwich Layering

«interface»
Usagelnterface

Pure Interface Layer
Interfaces may extend
interfaces, but there is no
implementation defined in
this layer.

Common Code Layer
Only abstract classes are
defined in this layer, possibly
with inheritance, factoring out
any common implementation.

Concrete Class Layer
Only concrete classes are
defined, and they do not
inherit from one another.

A

ConcretelLeaf ConcretelLeaf

A

ConcretelLeaf

Autognosis

An object can only
access other

objects through
public interfaces

William Cook, "On Understanding Data Abstraction, Revisit

ed"”

It is possible to
do Object-Oriented
programning 1in

Java

William Cook, "On Understanding Data Abstraction, Revisited"

Object-Oriented
subset of Java:
class name 1is

only after “new”

William Cook, "On Understanding Data Abstraction, Revisited"

Liskov Substitution Principle

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one whose
objects provide all the behavior of objects of another
type (the supertype) plus something extra. What is
wanted here is something like the following substitution
property: If for each object o1 of type S there is an

object 02 of type T such that for all programs P defined
in terms of T, the behavior of P is unchanged when o1 is
substituted for 02, then S is a subtype of T.

Barbara Liskov
“Data Abstraction and Hierarchy"

public class RecentlyUsedList extends ArrayList<String>

{

@Override
public void add(String newItem)

{
if(newItem == null)
throw new IllegalArgumentException();
remove(newItem);
add(9, newItem);

ArrayList<String> list = new RecentlyUsedList();
list.add("Hello, World!");

list.clear();

list.add("Hello, World!");

list.add("Goodbye, World!");

list.add("Hello, World!");

assert list.size() == 2;

list.add(1, "Hello, World!");

list.add(null); // throws

public class RecentlyUsedList
{

public int size()

{

}
public void add(String newItem)

{

return list.size();

if(newItem == null)

throw new IllegalArgumentException();
list.remove(newItem);
list.add(9, newItem);

}

public void clear()

{
}

list.clear();

private List<String> list = new ArrayList<string>();

Composite Compromises

Some features

advertised Ln Root

may wot apply to both
Leafand Composite.

Root

> operationl
operation2

| _composite g

operationl operationl
operation2 operation2

S 2
— E — B et e it —

- =

014 0803076 m_
SE ARA IoN JOHN BOWLBY

HOMI T4

-
.k

Infrastructure + Services + Domain

Infrastructure

foundations introduced in -

Plumbing and service
root layer of the hierarchy.

| | |
Services
Services adapted and
extended appropriately for
use by the domain classes. A A

| ' | |
Domain
Application domain concepts
modelled and represented
with respect to extension of A
]

root infrastructure.

Domain x Services x Infrastructure

Domain Services Infrastructure
Application domain Services adapted Plumbing and service
concepts modelled and appropriately for foundations for use
represented with respect use by the domain as self-contained

to plug-in services. classes. plug-ins.

oo

realisation

A

Selfish Objects

* Focusing on what objects want, not
they can use or be given

» EXpress external dependencies as
specific and narrow plug-in interfaces

* This Is In contrast to abstracting
Interfaces from implementations
= Better than not abstracting interfaces at

all, but often end up with a broad and
unfocused facade

mplementation- Implementation
based naming name
(and thinking)

Implementation
name

Role-based naming

The Many Values of Value

* The term value Is used iIn many
overlapping and contradictory ways
* The mechanism of pass by value

= A declarative construct, e.g., struct in
C# defines programmatic value types

= A kind of object representing fine-
grained information in a domain model

* The general notion of quantity or
measure of something in the real world

Domain-Driven

Many objects have no conceptual
identity. These objects describe
some characteristic of a thing. |...]

When you care only about the
attributes of an element of the
model, classify it as a VALUE OBJECT.

Make it express the meaning of the
attributes it conveys and give it
related functionality. Treat the
VALUE OBJECT as immutable. Don't
give it any identity and avoid the
design complexities necessary to
maintain ENTITIES.

Complementary Perspectives

* The Platonic Perspective

= An idealised view of what values are In
terms of maths and the physical world

» The Computational Perspective

= A model-based view of what values
are in terms of programming concepts

» The Language Perspective

* The computational view bound to the
specifics of a programming language

PROBLEM

FRAMES %

4 \17 1 L)) and structuring

software
development

problems

phenomenon (plural: phenomena):
An element of what we can observe in
the world. Phenomena may be
individuals or relations. Individuals are
entities, events, or values. Relations
are roles, states, or truths.

individual: An individual is a
phenomenon that can be named and
IS distinct from every other individual:

for example, the number 17, George
lll, or Deep Blue's first move against
Kasparov.

relationship: A kind of phenomenon.
An association among two or more
individuals, for example, Mother(Lucy,
Joe). Also, generally, any pattern or
structure among phenomena of a
domain.

PROBLEM

FRAMES

Michael Jackson

Analyzing

and structurmg
ftware

development

problems

Events. An event is an individual
happening, taking place at some particular
point in time. Each event is indivisible and
instantaneous.

Entities. An entity is an individual that
persists over time and can change its
properties and states from one point in
time to another.

Values. A value is an intangible individual
that exists outside time and space, and is

not subject to change.

States. A state is a relation among
individual entities and values; it can
change over time.

Truths. Atruth is a relation among
individuals that cannot possibly change
over time.

Roles. Arole is a relation between an
event and individuals that participate in it in
a particular way.

On the Origin of Species

» Value types differ in the generality
and focus of their domain

» Some are mathematical, e.g., integers
= Some are programmatic, e.g., strings
» Some are real world, e.qg., ISBNs

» Value types reflect constraints
* E.g., ISBNs have a well-formedness rule
* E.g., Int Is a bounded subset of integers

Systems of Values

» Operations, relationships and
constraints form systems of values

» E.g., a pointin time is a value, as is the
difference between two points in time,
but time point, time period and time
Interval are not equivalent types

» E.g., distance divided by time yields
speed (and displacement divided by
time yields velocity)

povo, sm.

. Conjunto de individuos que falam (em regra) a mesma
lingua, tém costumes e habitos idénticos, uma histoéria e
tradicoes communs.

. Os habitantes duma localidade ou regido; povoacao.

. V. povoado.
. Multidao.
5. V.plebe.

Minidicionario da Lingua Portuguesa

Whole Value

Besides using the handful of literal values oftered by the language
(numbers, strings, true and false) and an even smaller complement of
objects normally used as values (date, ime, point), you will make and
use new objects with this pattern that represent the meaningful
quantities of your business. These values will carry whole, useful
chunks of information from the user mterface to the domain model.

Construct specialized values to quantity your domain model and use
these values as the arguments of their messages and as the units of
mput and output. Make sure these objects capture the whole quantity,
with all its implications beyond merely magnitude; but keep them
independent of any particular domain. (The word value here implies

that these objects do not have 1dentity of importance.)

Ward Cunningham
"T'he CHECKS Pattern Language of Information Integrity"

Values as Objects

* From a programming perspective,
we can model values as objects
* Hence value objects and value types
» Value objects have significant state but
Insignificant identity
= But there Is no dichotomy or conflict
between values and objects

= A value object is a kind or style of
object that realises a value

Patterns of Value

VALUE
BJECT
CELL BFOLLOW
VALUE UILT-INS
VALIDATING OVERLOAD—-
COPIED IMMUTABLE CONSTRUCTOR OVERRIDE
V ALUE VALUE \ METHOD PAIR
CLASS
/ l FACTORY
METHOD BRIDGE
CLONING MUTABLE METHOD
COMPANION \\ \
Cory C . .
CONSTRUCTOR ONVERSION YPE-SPECIFIC
METHOD OVERLOAD
IMPLICIT /

FAMILIAL
CONVERSION

State

7

Behaviour

Identity T

|| SHARED PATH |@ <ol
Please consider . [THIS IS
other path users | ALL USERS SHC

CYCLISTS ARE A

No liability will be accej

Referential transparency and referential opaqueness are
properties of parts of computer programs. An expression is said
to be referentially transparent if it can be replaced with its value
without changing the program (in other words, yielding a program
that has the same effects and output on the same input). The
opposite term is referentially opaque.

While in mathematics all function applications are referentially
transparent, in programming this is not always the case. The

importance of referential transparency is that it allows a
programmer (or compiler) to reason about program behavior. This
can help in proving correctness, simplifying an algorithm,
assisting in modifying code without breaking it, or optimizing code
by means of memoization, common subexpression elimination or
parallelization.

http://en.wikipedia.org/wiki/Referential_transparency_(computer_science)

}1 NILEY SER N
SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

Frank Buschmann
Kevlin Henney

Douglas C. Schmidt

Immutable Value

Define a value object type whose
instances are immutable.

Copied Value

Define a value object type whose
instances are copyable.

Value Object Smells

= Ahaemia
= Little behaviour beyond field access

= Faillure to enforce value invariants, I.e.,
constructors that allow construction of
iInvalid values

= Multiple stereotypes

= Strong service behaviour and external
dependencies, e.d., ISBN class that
checks for existence of a book

General POLO Anatomy

= Construction...
= Constructor enforces validity

= Comparison...

= Equality Is a fundamental concept

= Total ordering may or may not apply
= Classification and conversion...

* Neither a subclass nor a superclass be
= May support conversions

public final class Date implements ...

{

ﬁﬁﬁ]ic int getYear() ...
public int getMonth() ...
public int getDayInMonth() ...

public void setYear(int newYear) ...
public void setMonth(int newMonth) ...
public void setDayInMonth(int newDayInMonth) ...

public final class Date implements ...

{

public int getYear() ...
public int getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public int getDayInWeek() ...

public void setYear(int newYear) ...

public void setMonth(int newMonth) ...

public void setWeekInYear(int newWeek) ...
public void setDayInYear(int newDayInYear) ...
public void setDayInMonth(int newDayInMonth) ...
public void setDayInWeek(int newDayInWeek) ...

public final class Date implements ...

{

public int getYear() ...

public int getMonth() ...

public int getWeekInYear() ...

public int getDayInYear() ...

public int getDayInMonth() ...

public int getDayInWeek() ...

public void setYear(int newYear) ...

public void setMonth(int newMonth) ...

public void setWeekInYear(int newWeek) ...
public void setDayInYear(int newDayInYear) ...
public void setDayInMonth(int newDayInMonth) ...
public void setDayInWeek(int newDayInWeek) ...

ﬁ;%vate int year, month, dayInMonth;

public final class Date implements ...

{

public int getYear() ...

public int getMonth() ...

public int getWeekInYear() ...

public int getDayInYear() ...

public int getDayInMonth() ...

public int getDayInWeek() ...

public void setYear(int newYear) ...

public void setMonth(int newMonth) ...

public void setWeekInYear(int newWeek) ...
public void setDayInYear(int newDayInYear) ...
public void setDayInMonth(int newDayInMonth) ...
public void setDayInWeek(int newDayInWeek) ...

ﬁ;%vate int daysSinceEpoch;

‘When it is not necessary to change,
it is necessary not to change.

Lucius Cary

public final class Date implements ...

{

public
public
public
public
public
public

int getYear() ...
int getMonth() ...
int getWeekInYear() ...
int getDayInYear() ...
int getDayInMonth() ...
int getDayInWeek() ...

public final class Date implements ...

{

public
public
public
public
public
public

int getYear() ...

Month getMonth() ...
int getWeekInYear() ...
int getDayInYear() ...
int getDayInMonth() ...

DayOfWeek getDayInWeek() ...

public final class Date implements ...

{

ﬁﬁﬁ]ic int year() ...
public Month month() ...
public int weekInYear() ...

public int dayInYear() ...
public int dayInMonth() ...
public DayOfWeek dayInWeek() ...

Language Defines a Context

= Design Is context sensitive

= And design detall is, therefore, affected
by choice of programming language

= Different languages encourage and
enable different choices and styles

» Culture and idioms, features for
Immutability, transparency of copying,
presence of nulls, support for operator
overloading, ease of equality, etc.

Elements of
Programming

Ale)

Two values of a value type are equal if and only
if they represent the same abstract entity. They
are representationally equal if and only if their
datums are identical sequences of Os and 1s.

If a value type is uniquely represented, equality
implies representational equality.

Reflexivity: I am me. Symmetry: If you're the same
as me, I'm the same as you.

equals
public o mn| ot (Ghisct cbd) Transitivity: If I'm the same
Indicates, = =ther some other object i/~ = " this one. as you’ and you're the same
The equal\ method implement””equivalence relation on non-mil obi=- a8 them, then I'm the same
e Tt is reflexive: for'dany non-mull reference vahe—=" = - 2o=T%) shouk :as: them too.
o It is symmetric: for any non-null ref~= - ailies x and v, x.equals (v) should return crue if and only if

v.equals (x) rehns ca=t
o It is rransitive: for any non-null reference valies x, v, and =z, f x. equals (v) retwns true and v.equals (z)
returns crue, then x.equals (z) should return true.

o [t is consistent: for anyaan—mltreforrmr fm COTlSlStency If there S ‘0 Change,
refurn crue of CDﬂSlStE:nﬂ‘. refurn false, prcmded iy, Eitaatieh T
is modified everything's the same as it ever was.

* For any non-mull reference value x, x.equals (null) SOOWOTEMHT TaISE"

The equals= method for class Cbiect implements e = e
that is, for any non-null reference vales x and v, this methcrd refur: Null 1nequallty I am ﬂﬂt nothlng
object (x == vy has the value true).

WNote that it is generally necessary to override the hasnCode method whenever this method is overridden, so as to
maintain the general contract for the hashCade method, which states that equal objects must have equal hash codes.

No throw: If you call, Hash equality: If we're the same, we
I won't hang up. both share the same magic numbers.

@Test

public void identicallyConstructedValuesCompareEqual ()
@Test

public void differentlyConstructedValuesCompareUnequal ()
@Test

public void valuesCompareUnequalToNull ()

@Test
public void identicallyConstructedValuesHaveEqualHashCodes ()

@Test

public void identically constructed values compare equal ()
@Test

public void differently constructed values compare unequal ()
@Test

public void values compare unequal to null()

@Test
public void identically constructed values have equal hash codes()

We have tried to demonstrate by these examples that it
is almost always incorrect to begin the decomposition of
a system into modules on the basis of a flowchart. We
propose instead that one begins with a list of difficult
design decisions or design decisions which are likely to

change. Each module is then designed to hide such a
decision from the others.

David [Parnas
"On the Criteria to Be Used in Decomposing Systems into Modules"

	Good�Object-�Oriented�Development
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Affordances
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Construction Time Again
	The Contract Metaphor
	Slide Number 19
	Slide Number 20
	Other Contract Approaches
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Parameter Objects
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Sandwich Layering
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Liskov Substitution Principle
	Slide Number 45
	Slide Number 46
	Composite Compromises
	Slide Number 48
	Infrastructure + Services + Domain
	Domain  Services  Infrastructure
	Selfish Objects
	Slide Number 52
	The Many Values of Value
	Slide Number 54
	Complementary Perspectives
	Slide Number 56
	Slide Number 57
	Slide Number 58
	On the Origin of Species
	Systems of Values
	Slide Number 61
	Slide Number 62
	Values as Objects
	Patterns of Value
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Value Object Smells
	Slide Number 70
	General POLO Anatomy
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Language Defines a Context
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85

