
Good
Object-
Oriented
Development

Kevlin Henney
kevlin@curbralan.com

@KevlinHenney

See http://programmer.97things.oreilly.com
(also http://tr.im/97tepsk and http://tinyurl.com/97tepsk)

and follow @97TEPSK

All architecture is design but not all design is architecture.
Architecture represents the significant design decisions that
shape a system, where significant is measured by cost of change.

Grady Booch

If you think good architecture is expensive, try bad architecture.
Brian Foote and Joseph Yoder

There is one consequence of considering code as software design
that completely overwhelms all others. It is so important and so
obvious that it is a total blind spot for most software
organizations. This is the fact that software is cheap to build.

Jack Reeves

encapsulate enclose (something) in or as if in a capsule.
express the essential feature of (someone or something) succinctly.
enclose (a message or signal) in a set of codes which allow use by or
transfer through different computer systems or networks.
provide an interface for (a piece of software or hardware) to allow or
simplify access for the user.

The New Oxford Dictionary of English

Affordances
The degrees of freedom a design
supports in (mis)use

Not all affordances are desirable or
intended

Encapsulation involves the reduction
of unwanted affordances

So, try to avoid offering interfaces that
are clumsy to use or that make it easy
to do the wrong thing

public class RecentlyUsedList
{

public void add(String newItem)
{

list.remove(newItem);
list.add(0, newItem);

}
public ArrayList<String> getList()
{

return list;
}
public void setList(ArrayList<String> newList)
{

list = newList;
}
private ArrayList<String> list;

}
RecentlyUsedList list = new RecentlyUsedList();
list.setList(new ArrayList<String>());
list.add("Hello, World!");
assert list.getList().size() == 1;
list.getList().clear();
assert list.getList().isEmpty();

Don't ever invite a vampire
into your house, you silly boy.

It renders you powerless.

public class RecentlyUsedList
{

public boolean isEmpty()
{

return list.isEmpty();
}
public int size()
{

return list.size();
}
public void add(String newItem)
{

list.remove(newItem);
list.add(0, newItem);

}
public void clear()
{

list.clear();
}
private List<String> list = new ArrayList<String>();

}
RecentlyUsedList list = new RecentlyUsedList();
list.add("Hello, World!");
assert list.size() == 1;
list.clear();
assert list.isEmpty();

public class RecentlyUsedList
{

public void add(String newItem)
{

list.remove(newItem);
list.add(0, newItem);

}
public String get(int index)
{

return list.get(index);
}
...

}
public class RecentlyUsedList
{

public void add(String newItem)
{

list.remove(newItem);
list.add(newItem);

}
public String get(int index)
{

return list.get(size() – index – 1);
}
...

}

public class RecentlyUsedList
{

public void add(String newItem)
{

if(list == null)
list = new ArrayList<String>();

else
list.remove(newItem);

list.add(newItem);
}
public int size()
{

return list == null ? 0 : list.size();
}
public String get(int index)
{

if(list == null)
throw new IndexOutOfBoundsException();

return list.get(size() – index - 1);
}
private List<String> list;

}

Accidental
complexity from
unnecessary
laziness

Refactoring (noun): a change made to the
internal structure of software to make it
easier to understand and cheaper to modify
without changing its observable behavior.

Refactor (verb): to restructure software by
applying a series of refactorings without
changing the observable behavior of the
software.

Martin Fowler, Refactoring

public class RecentlyUsedList
{

public RecentlyUsedList()
{

list = new ArrayList<String>();
}
public void add(String newItem)
{

if(list.contains(newItem))
{

int position;
position = list.indexOf(newItem);
string existingItem;
existingItem = list.get(position);
list.remove(position);
list.add(0, existingItem);

}
else
{

list.add(0, newItem);
}

}
public int size()
{

int size;
size = list.size();
return size;

}
public String get(int index)
{

int position;
position = 0;
for(String value : list)
{

if(position == index)
{

return value;
}
++position;

}
throw new IndexOutOfBoundsException();

}
private List<String> list;

}

public class RecentlyUsedList
{

public void add(String newItem)
{

list.remove(newItem);
list.add(newItem);

}
public int size()
{

return list.size();
}
public String get(int index)
{

return list.get(size() - index – 1);
}
private List<String> list = new ArrayList<String>();

}

Construction Time Again
A constructor is...

A special method for setting an
object's fields to some initial values?
A special method for establishing a
new object in a correct state?
A transactional method for establishing
a new and valid state of the system?

Try to avoid providing constructors
that don't give useful, usable objects

The Contract Metaphor
A contract defines a relationship by
a set of expectations and constraints

A class can be seen in terms of a
client–supplier relationship, with the
client dependent on the public
interface and the supplier offering the
encapsulated implementation

The contractual view reinforces the
public–private separation of a class

public class RecentlyUsedList
{

public boolean isEmpty() ...
public int size() ...
public void add(String newItem) ...
public String get(int index) ...
public boolean contains(String item) ...
public void clear() ...
...

}

postcondition:
returns size() == 0

postcondition:
isEmpty()

postcondition:
returns >= 0

precondition:
index >= 0 && index < size()
postcondition:
returns != null

given:
expectedSize = size() +
(contains(newItem) ? 0 : 1)

postcondition:
get(0).equals(newItem) &&
size() == expectedSize

postcondition:
returns whether
get(index).equals(item)
for any index in [0..size())

public class RecentlyUsedList
{

public void add(String newItem) ...
public String get(int index) ...
...

}

precondition:
index >= 0 && index < size()
postcondition:
returns != null

given:
expectedSize = size() + (contains(newItem) ? 0 : 1)
precondition:
newItem != null
postcondition:
get(0).equals(newItem) && size() == expectedSize

What would a class inheriting from
RecentlyUsedList be permitted and
disallowed from doing?

Other Contract Approaches
Design by Contract can be useful,
but has limitations

The specification of Object.equals is
assertion-based but not method-
centric
Operational complexity, re-entrancy,
resource usage, etc., often need to be
part of the contract
Tests can be used to define a contract

Everybody knows that TDD stands for Test Driven Development.
However, people too often concentrate on the words "Test" and
"Development" and don't consider what the word "Driven" really
implies. For tests to drive development they must do more than
just test that code performs its required functionality: they must
clearly express that required functionality to the reader. That is,
they must be clear specifications of the required functionality.
Tests that are not written with their role as specifications in mind
can be very confusing to read. The difficulty in understanding
what they are testing can greatly reduce the velocity at which a
codebase can be changed.

Nat Pryce and Steve Freeman
"Are Your Tests Really Driving Your Development?"

@Test
public void test()
{

RecentlyUsedList list = new RecentlyUsedList();
assertEquals(0, list.size());
list.add("Aardvark");
assertEquals(1, list.size());
assertEquals("Aardvark", list.get(0));
list.add("Zebra");
list.add("Mongoose");
assertEquals(3, list.size());
assertEquals("Mongoose", list.get(0));
assertEquals("Zebra", list.get(1));
assertEquals("Aardvark", list.get(2));
list.add("Aardvark");
assertEquals(3, list.size());
assertEquals("Aardvark", list.get(0));
assertEquals("Mongoose", list.get(1));
assertEquals("Zebra", list.get(2));
bool thrown;
try
{

list.get(3);
thrown = false;

}
catch(IndexOutOfBoundsException caught)
{

thrown = true;
}
assertTrue(thrown);

}

@Test
public void test1()
{

RecentlyUsedList list = new RecentlyUsedList();
assertEquals(0, list.size());
list.add("Aardvark");
assertEquals(1, list.size());
assertEquals("Aardvark", list.get(0));
list.add("Zebra");
list.add("Mongoose");
assertEquals(3, list.size());
assertEquals("Mongoose", list.get(0));
assertEquals("Zebra", list.get(1));
assertEquals("Aardvark", list.get(2));

}
@Test
public void test2()
{

RecentlyUsedList list = new RecentlyUsedList();
assertEquals(0, list.size());
list.add("Aardvark");
assertEquals(1, list.size());
assertEquals("Aardvark", list.get(0));
list.add("Zebra");
list.add("Mongoose");
assertEquals(3, list.size());
assertEquals("Mongoose", list.get(0));
assertEquals("Zebra", list.get(1));
assertEquals("Aardvark", list.get(2));
list.add("Aardvark");
assertEquals(3, list.size());
assertEquals("Aardvark", list.get(0));
assertEquals("Mongoose", list.get(1));
assertEquals("Zebra", list.get(2));

}
@Test
public void test3()
{

RecentlyUsedList list = new RecentlyUsedList();
assertEquals(0, list.size());
list add("Aardvark");

@Test
public void constructor()
{

RecentlyUsedList list = new RecentlyUsedList();
assertEquals(0, list.size());

}
@Test
public void add()
{

RecentlyUsedList list = new RecentlyUsedList();
list.add("Aardvark");
assertEquals(1, list.size());
list.add("Zebra");
list.add("Mongoose");
assertEquals(3, list.size());
list.add("Aardvark");
assertEquals(3, list.size());

}
@Test
public void get()
{

RecentlyUsedList list = new RecentlyUsedList();
list.add("Aardvark");
list.add("Zebra");
list.add("Mongoose");
assertEquals("Mongoose", list.get(0));
assertEquals("Zebra", list.get(1));
assertEquals("Aardvark", list.get(2));
list.add("Aardvark");
assertEquals("Aardvark", list.get(0));
assertEquals("Mongoose", list.get(1));
assertEquals("Zebra", list.get(2));
bool thrown;
try
{

list.get(3);
thrown = false;

}
catch(IndexOutOfBoundsException caught)
{

thrown = true;
}
asserTrue(thrown);

}

Constructor

Add

Get

@Test
public void initialListIsEmpty()
{

RecentlyUsedList list = new RecentlyUsedList();

assertEquals(0, list.size());
}
@Test
public void additionOfSingleItemToEmptyListIsRetained()
{

RecentlyUsedList list = new RecentlyUsedList();
list.add("Aardvark");

assertEquals(1, list.size());
assertEquals("Aardvark", list.get(0));

}
@Test
public void additionOfDistinctItemsIsRetainedInStackOrder()
{

RecentlyUsedList list = new RecentlyUsedList();
list.add("Aardvark");
list.add("Zebra");
list.add("Mongoose");

assertEquals(3, list.size());
assertEquals("Mongoose", list.get(0));
assertEquals("Zebra", list.get(1));
assertEquals("Aardvark", list.get(2));

}
@Test
public void duplicateItemsAreMovedToFrontButNotAdded()
{

RecentlyUsedList list = new RecentlyUsedList();
list.add("Aardvark");
list.add("Mongoose");
list.add("Aardvark");

assertEquals(2, list.size());
assertEquals("Aardvark", list.get(0));
assertEquals("Mongoose", list.get(1));

}
@Test(expected=IndexOutOfBoundsException.class)
public void outOfRangeIndexThrowsException()
{

RecentlyUsedList list = new RecentlyUsedList();
list.add("Aardvark");
list.add("Mongoose");
list.add("Aardvark");
list.get(3);

}

Addition of single item to
empty list is retained

Addition of distinct items is
retained in stack order

Duplicate items are moved to
front but not added

Out of range index throws
exception

Initial list is empty

A test is not a unit test if:

It talks to the database
It communicates across the network
It touches the file system
It can't run at the same time as any of your other unit tests
You have to do special things to your environment (such as
editing config files) to run it.

Tests that do these things aren't bad. Often they are worth
writing, and they can be written in a unit test harness. However,
it is important to be able to separate them from true unit tests
so that we can keep a set of tests that we can run fast whenever
we make our changes.

Michael Feathers, "A Set of Unit Testing Rules"

Root Core
Code

External
Wrapper

Wrapped

Core
Code

Usage
Interface

External
Wrapper

Root

Decoupled

Core
Code

Usage
Interface

Test
Double

Root

Doubled

There can be only one.

Parameterize
from Above

Hardwire
from Below

If you have a procedure with
ten parameters, you probably
missed some.

Alan Perlis

Parameter Objects
Many kinds of parameter objects...

Context objects are for passing
contextual information around
Data transfer objects (DTOs) are for
batching property queries or changes
Value objects often start life as simple
parameter objects

Stability of the whole is greater than
the stability of the individual parts

Terminal
Expression

evaluate

NonTerminal
Expression

evaluate

Context

Client

Expression

evaluate
*1

1

Terminal
Expression

evaluate

NonTerminal
Expression

evaluate

Context

Client

Expression

evaluate
*

11

Terminal
Expression

evaluate

NonTerminal
Expression

evaluate

Context

InterpreterClient

Expression

evaluate
*

11

generalisation

specialisation

commonality

variation

The process of moving from the specific to the
general is both necessary and perilous. A doctor
could, with some statistical support, generalize
about men of a certain age and weight. But what
if generalizing from other traits — such as high
blood pressure, family history, and smoking —
saved more lives? Behind each generalization is a
choice of what factors to leave in and what
factors to leave out, and those choices can prove
surprisingly complicated.

Malcolm Gladwell
"Troublemakers", What the Dog Saw

«interface»
UsageInterface

CommonCode CommonCode

ConcreteLeaf ConcreteLeaf

Pure Interface Layer
Interfaces may extend
interfaces, but there is no
implementation defined in
this layer.

Common Code Layer
Only abstract classes are
defined in this layer, possibly
with inheritance, factoring out
any common implementation.

Concrete Class Layer
Only concrete classes are
defined, and they do not
inherit from one another. ConcreteLeaf

Sandwich Layering

William Cook, "On Understanding Data Abstraction, Revisited"

William Cook, "On Understanding Data Abstraction, Revisited"

William Cook, "On Understanding Data Abstraction, Revisited"

Liskov Substitution Principle

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one whose
objects provide all the behavior of objects of another
type (the supertype) plus something extra. What is
wanted here is something like the following substitution
property: If for each object o1 of type S there is an
object o2 of type T such that for all programs P defined
in terms of T, the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

public class RecentlyUsedList extends ArrayList<String>
{

@Override
public void add(String newItem)
{

if(newItem == null)
throw new IllegalArgumentException();

remove(newItem);
add(0, newItem);

}
...

}

ArrayList<String> list = new RecentlyUsedList();
list.add("Hello, World!");
list.clear();
list.add("Hello, World!");
list.add("Goodbye, World!");
list.add("Hello, World!");
assert list.size() == 2;
list.add(1, "Hello, World!");
list.add(null); // throws

public class RecentlyUsedList
{

public int size()
{

return list.size();
}
public void add(String newItem)
{

if(newItem == null)
throw new IllegalArgumentException();

list.remove(newItem);
list.add(0, newItem);

}
public void clear()
{

list.clear();
}
...
private List<String> list = new ArrayList<string>();

}

Composite Compromises

Leaf

operation1
operation2

Root

operation1
operation2

Composite

operation1
operation2

*
Client

Some features
advertised in Root
may not apply to both
Leaf and Composite.

Infrastructure
Plumbing and service
foundations introduced in
root layer of the hierarchy.

Services
Services adapted and
extended appropriately for
use by the domain classes.

Domain
Application domain concepts
modelled and represented
with respect to extension of
root infrastructure.

Infrastructure + Services + Domain

Infrastructure
Plumbing and service
foundations for use
as self-contained
plug-ins.

Services
Services adapted
appropriately for
use by the domain
classes.

Domain
Application domain
concepts modelled and
represented with respect
to plug-in services.

concept

realisation

Domain × Services × Infrastructure

Selfish Objects
Focusing on what objects want, not
they can use or be given

Express external dependencies as
specific and narrow plug-in interfaces

This is in contrast to abstracting
interfaces from implementations

Better than not abstracting interfaces at
all, but often end up with a broad and
unfocused façade

Name based on
implementation

Implementation
name

Client

Name based on
client usage

Implementation
name

Client

The Many Values of Value
The term value is used in many
overlapping and contradictory ways

The mechanism of pass by value
A declarative construct, e.g., struct in
C# defines programmatic value types
A kind of object representing fine-
grained information in a domain model
The general notion of quantity or
measure of something in the real world

Many objects have no conceptual
identity. These objects describe
some characteristic of a thing. [...]
When you care only about the
attributes of an element of the
model, classify it as a VALUE OBJECT.
Make it express the meaning of the
attributes it conveys and give it
related functionality. Treat the
VALUE OBJECT as immutable. Don't
give it any identity and avoid the
design complexities necessary to
maintain ENTITIES.

Complementary Perspectives
The Platonic Perspective

An idealised view of what values are in
terms of maths and the physical world

The Computational Perspective
A model-based view of what values
are in terms of programming concepts

The Language Perspective
The computational view bound to the
specifics of a programming language

phenomenon (plural: phenomena):
An element of what we can observe in
the world. Phenomena may be
individuals or relations. Individuals are
entities, events, or values. Relations
are roles, states, or truths.

individual: An individual is a
phenomenon that can be named and
is distinct from every other individual:
for example, the number 17, George
III, or Deep Blue's first move against
Kasparov.

relationship: A kind of phenomenon.
An association among two or more
individuals, for example, Mother(Lucy,
Joe). Also, generally, any pattern or
structure among phenomena of a
domain.

Events. An event is an individual
happening, taking place at some particular
point in time. Each event is indivisible and
instantaneous.
Entities. An entity is an individual that
persists over time and can change its
properties and states from one point in
time to another.
Values. A value is an intangible individual
that exists outside time and space, and is
not subject to change.
States. A state is a relation among
individual entities and values; it can
change over time.
Truths. A truth is a relation among
individuals that cannot possibly change
over time.
Roles. A role is a relation between an
event and individuals that participate in it in
a particular way.

On the Origin of Species
Value types differ in the generality
and focus of their domain

Some are mathematical, e.g., integers
Some are programmatic, e.g., strings
Some are real world, e.g., ISBNs

Value types reflect constraints
E.g., ISBNs have a well-formedness rule
E.g., int is a bounded subset of integers

Systems of Values
Operations, relationships and
constraints form systems of values

E.g., a point in time is a value, as is the
difference between two points in time,
but time point, time period and time
interval are not equivalent types
E.g., distance divided by time yields
speed (and displacement divided by
time yields velocity)

povo, sm.
1. Conjunto de indivíduos que falam (em regra) a mesma

lingua, têm costumes e hábitos idênticos, uma história e
tradições communs.

2. Os habitantes duma localidade ou região; povoação.
3. V. povoado.
4. Multidão.
5. V. plebe.

Minidicionário da Língua Portuguesa

Whole Value

Besides using the handful of literal values offered by the language
(numbers, strings, true and false) and an even smaller complement of
objects normally used as values (date, time, point), you will make and
use new objects with this pattern that represent the meaningful
quantities of your business. These values will carry whole, useful
chunks of information from the user interface to the domain model.

Construct specialized values to quantify your domain model and use
these values as the arguments of their messages and as the units of
input and output. Make sure these objects capture the whole quantity,
with all its implications beyond merely magnitude; but keep them
independent of any particular domain. (The word value here implies
that these objects do not have identity of importance.)

Ward Cunningham
"The CHECKS Pattern Language of Information Integrity"

Values as Objects
From a programming perspective,
we can model values as objects

Hence value objects and value types
Value objects have significant state but
insignificant identity

But there is no dichotomy or conflict
between values and objects

A value object is a kind or style of
object that realises a value

Patterns of Value
VALUE
OBJECT

IMMUTABLE
VALUE

COPIED
VALUE

MUTABLE
COMPANION

CLONING

COPY
CONSTRUCTOR

CLASS
FACTORY
METHOD

CONVERSION
METHOD

OVERLOAD–
OVERRIDE

METHOD PAIR

BRIDGE
METHOD

TYPE-SPECIFIC
OVERLOAD

CELL
VALUE

VALIDATING
CONSTRUCTOR

IMPLICIT
FAMILIAL

CONVERSION

OPERATORS
FOLLOW
BUILT-INS

Identity

State

Behaviour

Referential transparency and referential opaqueness are
properties of parts of computer programs. An expression is said
to be referentially transparent if it can be replaced with its value
without changing the program (in other words, yielding a program
that has the same effects and output on the same input). The
opposite term is referentially opaque.

While in mathematics all function applications are referentially
transparent, in programming this is not always the case. The
importance of referential transparency is that it allows a
programmer (or compiler) to reason about program behavior. This
can help in proving correctness, simplifying an algorithm,
assisting in modifying code without breaking it, or optimizing code
by means of memoization, common subexpression elimination or
parallelization.

http://en.wikipedia.org/wiki/Referential_transparency_(computer_science)

Immutable Value
Define a value object type whose
instances are immutable.

Copied Value
Define a value object type whose
instances are copyable.

Value Object Smells
Anaemia

Little behaviour beyond field access
Failure to enforce value invariants, i.e.,
constructors that allow construction of
invalid values

Multiple stereotypes
Strong service behaviour and external
dependencies, e.g., ISBN class that
checks for existence of a book

General POLO Anatomy
Construction...

Constructor enforces validity
Comparison...

Equality is a fundamental concept
Total ordering may or may not apply

Classification and conversion...
Neither a subclass nor a superclass be
May support conversions

public final class Date implements ...
{

...
public int getYear() ...
public int getMonth() ...
public int getDayInMonth() ...
public void setYear(int newYear) ...
public void setMonth(int newMonth) ...
public void setDayInMonth(int newDayInMonth) ...
...

}

public final class Date implements ...
{

...
public int getYear() ...
public int getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public int getDayInWeek() ...
public void setYear(int newYear) ...
public void setMonth(int newMonth) ...
public void setWeekInYear(int newWeek) ...
public void setDayInYear(int newDayInYear) ...
public void setDayInMonth(int newDayInMonth) ...
public void setDayInWeek(int newDayInWeek) ...
...

}

public final class Date implements ...
{

...
public int getYear() ...
public int getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public int getDayInWeek() ...
public void setYear(int newYear) ...
public void setMonth(int newMonth) ...
public void setWeekInYear(int newWeek) ...
public void setDayInYear(int newDayInYear) ...
public void setDayInMonth(int newDayInMonth) ...
public void setDayInWeek(int newDayInWeek) ...
...
private int year, month, dayInMonth;

}

public final class Date implements ...
{

...
public int getYear() ...
public int getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public int getDayInWeek() ...
public void setYear(int newYear) ...
public void setMonth(int newMonth) ...
public void setWeekInYear(int newWeek) ...
public void setDayInYear(int newDayInYear) ...
public void setDayInMonth(int newDayInMonth) ...
public void setDayInWeek(int newDayInWeek) ...
...
private int daysSinceEpoch;

}

When it is not necessary to change,
it is necessary not to change.

Lucius Cary

public final class Date implements ...
{

...
public int getYear() ...
public int getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public int getDayInWeek() ...
...

}

public final class Date implements ...
{

...
public int getYear() ...
public Month getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public DayOfWeek getDayInWeek() ...
...

}

public final class Date implements ...
{

...
public int year() ...
public Month month() ...
public int weekInYear() ...
public int dayInYear() ...
public int dayInMonth() ...
public DayOfWeek dayInWeek() ...
...

}

Language Defines a Context
Design is context sensitive

And design detail is, therefore, affected
by choice of programming language

Different languages encourage and
enable different choices and styles

Culture and idioms, features for
immutability, transparency of copying,
presence of nulls, support for operator
overloading, ease of equality, etc.

Two values of a value type are equal if and only
if they represent the same abstract entity. They
are representationally equal if and only if their
datums are identical sequences of 0s and 1s.
If a value type is uniquely represented, equality
implies representational equality.

Reflexivity: I am me. Symmetry: If you're the same
as me, I'm the same as you.

Transitivity: If I'm the same
as you, and you're the same
as them, then I'm the same
as them too.

Consistency: If there's no change,
everything's the same as it ever was.

Null inequality: I am not nothing.

Hash equality: If we're the same, we
both share the same magic numbers.

No throw: If you call,
I won't hang up.

@Test
public void identicallyConstructedValuesCompareEqual()
...
@Test
public void differentlyConstructedValuesCompareUnequal()
...
@Test
public void valuesCompareUnequalToNull()
...
@Test
public void identicallyConstructedValuesHaveEqualHashCodes()
...

@Test
public void identically_constructed_values_compare_equal()
...
@Test
public void differently_constructed_values_compare_unequal()
...
@Test
public void values_compare_unequal_to_null()
...
@Test
public void identically_constructed_values_have_equal_hash_codes()
...

We have tried to demonstrate by these examples that it
is almost always incorrect to begin the decomposition of
a system into modules on the basis of a flowchart. We
propose instead that one begins with a list of difficult
design decisions or design decisions which are likely to
change. Each module is then designed to hide such a
decision from the others.

David L Parnas
"On the Criteria to Be Used in Decomposing Systems into Modules"

	Good�Object-�Oriented�Development
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Affordances
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Construction Time Again
	The Contract Metaphor
	Slide Number 19
	Slide Number 20
	Other Contract Approaches
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Parameter Objects
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Sandwich Layering
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Liskov Substitution Principle
	Slide Number 45
	Slide Number 46
	Composite Compromises
	Slide Number 48
	Infrastructure + Services + Domain
	Domain Services Infrastructure
	Selfish Objects
	Slide Number 52
	The Many Values of Value
	Slide Number 54
	Complementary Perspectives
	Slide Number 56
	Slide Number 57
	Slide Number 58
	On the Origin of Species
	Systems of Values
	Slide Number 61
	Slide Number 62
	Values as Objects
	Patterns of Value
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Value Object Smells
	Slide Number 70
	General POLO Anatomy
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Language Defines a Context
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85

