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[ he problem

[t 1s way too hard to build:

|. correct highly concurrent systems
2. truly scalable systems

3. fault-tolerant systems that self-heals

..using “'state-of-the-art” tools
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Vision

Simpler

Concurrency

Scalability

Fault-tolerance
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Vision

.with One single unified

Programming model

Runtime service
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Manage system overloaa
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Overview

Akka Is the platform for the next generation event-driven,
scalable and fault-tolerant architectures on the VM

Simpler Concurrency
-vent-driven Architecture

True Scalabllity
Fault-tolerance

[ransparent Remoting
Java & Scala AP
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ARCHITECTURE
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WHERE IS AKKA USED?

SOME

- XAMPL

=S

FINANCE

® Stock trend Analysis & Simulation

® [vent-driven messaging systems

BETTING & GAMING

® Massive multiplayer online gaming

® High throughput and transactional

betting

TELECOM

® Streaming media network gateways

SIMULATION

® 3D simulation engines

E-COMMERCE

® Social media community sites
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Akka

N the toolbox




Actor Model Benefits

 Easier to reason about
* Raised abstraction level
* Easier to avoid

— Race conditions

— Deadlocks

— Starvation

— Live locks
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Actors

case object Tick

4 A

class Counter extends Actor {
var counter = 0

def receive = {
case Tick =>
counter += 1
println(counter)

}

}
\_ /
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Create Actors

[ val counter actor‘Of[Counter‘])

counter is an ActorRef




Create Actors

[val actor = actorOf(new MyActor'(..)))

create actor with constructor arguments




Start actors

4 )

val counter = actorOf[Counter]
counter.start ,




Start actors

Gal counter = actorOf|[Counter]. star‘t)




Stop actors

4 )

val counter = actorOf|[Counter].start
counter.stop ,




life-cycle callbacks

4 )

class MyActor extends Actor {

override def preStart = {
. // called before f‘start’

}..

override def postStop = {
. // called after f‘stop’

o
U y
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Send:!

[counter‘ ! Tick)

fire-forget




(val result = (actor !! Message).as[Str‘ingD

uses Future under the hood (with time-out)
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Send: !

// returns a future

val future = actor !!! Message
future.awailt

val result = future.get

Futures.awaitOne(List(futl, fut2,
Futures.awaitAll(List(futl, fut2,

\_

[ J
 J [
SN N
SN N

returns the Future directly
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Future

4 A

val futurel, future2, future3d =
new DefaultCompletableFuture(1000)

futurel.awailt
future2.onComplete(f => ...)
future3d.map((f) => ...)

futurel.completeWithResult(...)
future2.completeWithException(...)
future3.completeWith(future2)

\_ /
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Reply

-

class SomeActor extends Actor {

def receive = {
case User(name) =>
// use reply
self.reply(“Hi ” + name)

~

/
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Reply

-

\_

class SomeActor extends Actor {
def receive = {
case User(name) =>
// store away the sender
// to use later or
// somewhere else
. = self.sender

h
¥

~
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Reply

4 )

class SomeActor extends Actor {
def receive = {
case User(name) =>
// store away the sender future
// to resolve later or
// somewhere else
. = self.senderFuture

¥

}
\_ /

Wednesday, February 16, 2011



HotSwap

-~

self become {
// new body
case NewMessage =>

~

4/




HotSwap

/ractor | HotSwap { h

// new body
case NewMessage =>

L ,/




HotSwap

C self. unbecome(D




ActorRegistry

4 )

val actors = Actor.registry.actors()

val actors = Actor.registry.actorsfFor[TYPE]
val actors = Actor.registry.actorsFor(id)
val actor = Actor.registry.actorFor(uuid)
Actor.registry.shutdownAll()

/
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Set dispatcher

-~

self.dispatcher

}...

actor.dispatcher

\_

class MyActor extends Actor {

= Dispatchers

.newThreadBasedDispatcher(self)

dispatcher // before started

/
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fault-tolerance




Stolen from
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NODE 1 NODE 2
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NODE 1 NODE 2
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NODE 1 NODE 2

REPLICATION
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Fault handlers

e O
AllForOneStrategy(

problems,
maxNrOfRetries,
withinTimeRange)

OneForOneStrategy(
problems,
maxXNrOfRetries,

withinTimeRange)
\_ /




Linking

-

\_

link(actor)
unlink(actor)

startLink(actor)

spawnLink[MyActor]

,/




Supervision

4 A

class Supervisor extends Actor {
faultHandler = OneForOneStrategy(
List(classOf[Throwable])
5, 5000))

def receive = {
case Register(actor) =>
link(actor)

}
}
I\ ,/
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Manage failure

}
\§

/,class FaultTolerantService extends Actor {

override def preRestart(reason: Throwable) = {
... // clean up before restart

}
override def postRestart(reason: Throwable) =
. // 1init after restart

}..

~

{

/
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Declarative config

//;;pervisor supervisor = Supervisor( ‘\\\

SupervisorConfig(
AllForOneStrategy(List(classOf[Exception]), 3, 1000),
Supervise(
actorl,
Permanent) ::
Supervise(
actor2,
Temporary) ::
Nil

N /
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Actors
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Remote Server

4 )

// use host & port in config
Actor.remote.start()

Actor.remote.start("localhost”, 2552)

\_ /

Scalable implementation based on
NIO (Netty) & Protobuf
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Two types of
remote actors

Client initiated & managed
Server initiated & managed




Client-managed

supervision works across nodes

4 )

import Actor.
val service = remote.actorOf[MyActor](host, port)

service ! message

\_ /




Server-managed

register and manage actor on server
client gets “dumb” proxy handle

-

import Actor.

~

remote.register(“service:id”, actorOf[MyService])

L /

server part




Server-managed

val service = remote.actorFor(
“service:1d”,
“darkstar?”,
9999)

service ! message

client part




Server-managed

/s )

import Actor.

remote.register(actorOf[MyService])
remote.registerByUuid(actorOf[MyService])
remote.registerPerSession(

“service:id”, actorOf[MyService])

remote.unregister(“service:id”)
remote.unregister(actorRef)

\_ /

server part
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Remoting Security

//;kka { ‘\\

remote {
secure-cookie = "O50EQAODODO6010A00000900040DO6OFOCO9060B"
server {
require-cookie = on
untrusted-mode = on
}
}
}

o /

Erlang-style secure cookie




Actors
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Cloudy Akka

. Subscription-based cluster membership service
* Highly available cluster registry for actors

* Highly available centralized configuration service
* Automatic replication with automatic fail-over

upon node crash

* Transparent and user-configurable load-balancing
'+ Transparent adaptive cluster rebalancing
¢ Leader election

—_—— e e
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Example:
Clustered Actors

// Ping Pong messages
@serializable sealed trait PingPong

case object Ball extends PingPong
case object Stop extends PingPong
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Example:
Clustered Actors

@serializable class PingActor extends Actor {
var count = 0

def receive = {
case Ball =>
if (count < NrOfPings) {
println("---->> PING (%s)" format count)
count += 1
self reply Ball
} else {
self.sender.foreach(_!! Stop)
self.stop
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Example:
Clustered Actors

| @serializable class PongActor extends Actor {
def receive = {
case Ball =>
self reply Ball

case Stop =>
self.stop
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Example:
Clustered Actors

Cluster.startLocalCluster()

Cluster.newNode(NodeAddress(CLUSTER_NAME, "node@", port = 9991)).start
Cluster.newNode(NodeAddress (CLUSTER_NAME, "nodel", port = 9992)).start ::
Cluster.newNode(NodeAddress (CLUSTER_NAME, "node2", port = 9993)).start ::
Cluster.newNode(NodeAddress (CLUSTER_NAME, "node3", port = 9994)).start ::

, Cluster.newNode(NodeAddress (CLUSTER_NAME, "node4", port = 9995)).start :: Nil

val localNode
val remoteNodes

— _— — — — — — — = — — — —
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Example:
Clustered Actors




| localNode store (classOf[PingActor])

Example:
Clustered Actors




Example:
Clustered Actors

| localNode store (classOf[PingActor])
- localNode store (classOf[PongActor], 5)
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Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head
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Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head

Wednesday, February 16, 2011



Example:
Clustered Actors

localNode store (classOf[PingActor])
. localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head

|

localNode.ref(

| val pong
|
U
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Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head

\‘

l val pong = localNode.ref(
| actorId = PONG_SERVICE, router = Router.RoundRobin)

|
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Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head

|

| val pong = localNode.ref(
| actorId = PONG_SERVICE, router = Router.RoundRobin)

|
' implicit val replyTo

Some (pong)

Wednesday, February 16, 2011



Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head
|
| val pong = localNode.ref(
| actorId = PONG_SERVICE, router = Router.RoundRobin)
|
' implicit val replyTo = Some(pong)
ping ! Ball // serve
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How to run it!

4 Deploy as dependency JAR in WEB-INF/lib etc.

™M Run as stand-alone microkernel

¥ OSGi-enabled; drop in any OSGi container
(Spring DM server, Karaf etc.)




..and

STM
HTTP Fo
Camel
|TA Dataflow Guice
0SG TUBSUD L mop
Spring

Persistence Security




Use Akka from




Akka

Released today



http://jonasboner.com/
http://jonasboner.com/

http://akka.io
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Akka
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Camel: consumer
A

-

class MyConsumer extends Actor with Consumer
def endpointUri =

def receive = {
case msg: Message =>
log.info( format
msg.bodyAs(classOf[String]))

}

N /




Camel: consumer
I

-

class MyConsumer extends Actor with Consume
def endpointUri =

def receive = {
case msg: Message =>
reply( format
msg.bodyAs(classOf[String]))

}

\ /



http://0.0.0.0:8877/camel/test1
http://0.0.0.0:8877/camel/test1

Camel: producer

-

class CometProducer
extends Actor with Producer {

~

def endpointUri =
"cometd://localhost:8111/test™

< Y,




Camel: producer

-

\\iroducer | time

val time = "Current time: "

val producer = actorOf[CometProducer].sta

+ new Date

e

/




