Akka:

Simpler
through Actors

Jonas Boneéer

Scalable Solutions

jonas@jonasboner.com
twitter: @jboner

Wednesday, February 16, 2011

mailto:jonas@jonasboner.com
mailto:jonas@jonasboner.com

[he problem

[t 1s way too hard to build:

|. correct highly concurrent systems
2. truly scalable systems

3. fault-tolerant systems that self-heals

..using “'state-of-the-art” tools

Wednesday, February 16, 2011

Vision

Simpler

Concurrency

Scalability

Fault-tolerance

Wednesday, February 16, 2011

Vision

.with One single unified

Programming model

Runtime service

Wednesday, February 16, 2011

Manage system overloaa

Wednesday, February 16, 2011

(XXX X]] oo00000 eseosss
9= !

|

Scale up & Scale out

Wednesday, February 16, 2011

L

\‘lo s,.\tt.\ 2, \nl \ \sr\

be B AD

AR

Wednesday, February 16, 2011

© Bob Elsdale

Wednesday, February 16, 2011

Overview

Akka Is the platform for the next generation event-driven,
scalable and fault-tolerant architectures on the VM

Simpler Concurrency
-vent-driven Architecture

True Scalabllity
Fault-tolerance

[ransparent Remoting
Java & Scala AP

Wednesday, February 16, 2011

ARCHITECTURE

4 ™
Fault-tolerance

Remote
Actor

Local
Actor

Supervision Supervision

4 N
Scalability
Client
Managed Cluster
Remote Membership
Actors
—
(")
Concurrency
Actors STM Agents Dataflow

CORE

~———

-RVICES

Wednesday, February 16, 2011

ARCHITECTURE

))

~
J

Fault-tolerance

ADD-ON
MODULE

4 N
Scalability
Client Server
Managed Managed Cluster
Remote Remote Membership
Actors Actors
s ™
Concurrency
[Actors] [ST™M] [Agents J [Dataﬂow]
4 3
Persistence
Cassandra MongoDB Redis

Wednesday, February 16, 2011

ARCHITECTURE

=[S

REST Comet JTA

Spring Guice Camel
integration

-

Fault-tolerance

Local Remote
Actor Actor
Supervision Supervision

-
Scalability

Client Server
Managed Managed Cluster
Remote Remote Membership
Actors Actors

/

(

Concurrency

B

~

Persistence

=

-\

CLO
AK

-

DY

>

Wednesday, February 16, 2011

WHERE IS AKKA USED?

SOME

- XAMPL

=S

FINANCE

® Stock trend Analysis & Simulation

® [vent-driven messaging systems

BETTING & GAMING

® Massive multiplayer online gaming

® High throughput and transactional

betting

TELECOM

® Streaming media network gateways

SIMULATION

® 3D simulation engines

E-COMMERCE

® Social media community sites

|
|
|

Wednesday, February 16, 2011

Wednesday, February 16, 2011

Eventd —driver

7 Aread

Eventd —driver

7 Aread

4 clor

Be/’}a\//o/‘

State

Uall

Eventd —driver

7 Aread

Eventd —driver

7 Aread

Eventd —driver

7 Aread

Wednesday, February 16, 2011

Eventd —drivenr

7 Aread

Akka

N the toolbox

Actor Model Benefits

 Easier to reason about
* Raised abstraction level
* Easier to avoid

— Race conditions

— Deadlocks

— Starvation

— Live locks

Wednesday, February 16, 2011

Actors

case object Tick

4 A

class Counter extends Actor {
var counter = 0

def receive = {
case Tick =>
counter += 1
println(counter)

}

}
_ /

Wednesday, February 16, 2011

Create Actors

[val counter actor‘Of[Counter‘])

counter is an ActorRef

Create Actors

[val actor = actorOf(new MyActor'(..)))

create actor with constructor arguments

Start actors

4)

val counter = actorOf[Counter]
counter.start ,

Start actors

Gal counter = actorOf|[Counter]. star‘t)

Stop actors

4)

val counter = actorOf|[Counter].start
counter.stop ,

life-cycle callbacks

4)

class MyActor extends Actor {

override def preStart = {
. // called before f‘start’

}..

override def postStop = {
. // called after f‘stop’

o
U y

Wednesday, February 16, 2011

Send:!

[counter‘ ! Tick)

fire-forget

(val result = (actor !! Message).as[Str‘ingD

uses Future under the hood (with time-out)

Wednesday, February 16, 2011

Send: !

// returns a future

val future = actor !!! Message
future.awailt

val result = future.get

Futures.awaitOne(List(futl, fut2,
Futures.awaitAll(List(futl, fut2,

_

[J
 J [
SN N
SN N

returns the Future directly

Wednesday, February 16, 2011

Future

4 A

val futurel, future2, future3d =
new DefaultCompletableFuture(1000)

futurel.awailt
future2.onComplete(f => ...)
future3d.map((f) => ...)

futurel.completeWithResult(...)
future2.completeWithException(...)
future3.completeWith(future2)

_ /

Wednesday, February 16, 2011

Reply

-

class SomeActor extends Actor {

def receive = {
case User(name) =>
// use reply
self.reply(“Hi ” + name)

~

/

Wednesday, February 16, 2011

Reply

-

_

class SomeActor extends Actor {
def receive = {
case User(name) =>
// store away the sender
// to use later or
// somewhere else
. = self.sender

h
¥

~

Wednesday, February 16, 2011

Reply

4)

class SomeActor extends Actor {
def receive = {
case User(name) =>
// store away the sender future
// to resolve later or
// somewhere else
. = self.senderFuture

¥

}
_ /

Wednesday, February 16, 2011

HotSwap

-~

self become {
// new body
case NewMessage =>

~

4/

HotSwap

/ractor | HotSwap { h

// new body
case NewMessage =>

L ,/

HotSwap

C self. unbecome(D

ActorRegistry

4)

val actors = Actor.registry.actors()

val actors = Actor.registry.actorsfFor[TYPE]
val actors = Actor.registry.actorsFor(id)
val actor = Actor.registry.actorFor(uuid)
Actor.registry.shutdownAll()

/

Wednesday, February 16, 2011

Set dispatcher

-~

self.dispatcher

}...

actor.dispatcher

_

class MyActor extends Actor {

= Dispatchers

.newThreadBasedDispatcher(self)

dispatcher // before started

/

Wednesday, February 16, 2011

fault-tolerance

Stolen from

Wednesday, February 16, 2011

- - e

.. lel ‘5 Z‘dée A
standard OO

.L‘.-‘ el

‘ 7Y Vo lla¥g, Ciomponenfé Aave

- critical Ny importapt state

l \
‘ a H\
[
| AN
x |
\‘ |
I
| ‘
\
!

C/ assSificalion of SZ‘QZ‘&
" Scratch data f‘
- Static data

- S&(pp/ red ad boot Tine
" Sapp/ red A}/ oZ‘/’/e/‘ Ciomponen’é‘é

| © Dyna/n/c dad a
|

g In/%(z‘ £ fonr ot /7@/‘ SourlesS dcla |

|
‘
|

- Data poééfé/e o /‘eCO/y/paZ‘e

thad 1S /‘Mpo\S S /‘A/ e Co /‘eCLOM/OL(Z‘e
_ _ .)

— — —_— — = - — __ ___ __ — — — — — __——— _— — _— ——— - __ —

* Ihput From other Sources ; data
AL 15 /‘MPOS sible Zo reCLoMPL(Z‘e

Wednesday, February 16, 2011

Mees? Ae
protected
éy any Peans

|
|

- In/%(z‘ r” Forn oz‘/ver Sources ;, data
AL 15 /MPOSS/A/e Zo /‘eCLOM/OL(Z‘e

: . o . AW 3 v \
5 . o N P L

Fa A
4‘/ "/ 0/ .-",/
) f | a— / - al
[2 ‘y' ; /, (;l ?2' | y
] e '{- /, ,/ -

ey

7/

! / -

-
I Wi
¢

Wednesday, February 16, 2011

N p— —— — S— — R —————

An actor-based qpp/ 1cation eoilhH

eXp/ I‘CI‘Z‘ el ror /’ldna/ / /‘/?\9 dna/
CI‘/‘Z(/‘CQ/ /A }/ /‘MPOI‘Z(QI?Z(stale 1n arn

Error Kernel/

ERROR
KERNEL

Wednesday, February 16, 2011

ERROR
KERNEL

Wednesday, February 16, 2011

ERROR
KERNEL

Wednesday, February 16, 2011

ERROR
KERNEL

Wednesday, February 16, 2011

ERROR
KERNEL

O ARQ0Y
OLONTC

\C
0O 0O OC

Wednesday, February 16, 2011

ERROR
KERNEL

O ARQ0Y
OLONT

\C
0O 0O OC

Wednesday, February 16, 2011

ERROR
KERNEL

FOAHDAOY
ORONC

\C
D C

Wednesday, February 16, 2011

ERROR
KERNEL

Wednesday, February 16, 2011

ERROR
KERNEL

Y O
Slolee
@ O@

Wednesday, February 16, 2011

ERROR
KERNEL

Y O
Slole
@ O@

Wednesday, February 16, 2011

ERROR
KERNEL

Sloxel®

Wednesday, February 16, 2011

ERROR
KERNEL

Sloxel®

Wednesday, February 16, 2011

ERROR
KERNEL

O C

Wednesday, February 16, 2011

ERROR
KERNEL

Wednesday, February 16, 2011

Wednesday, February 16, 2011

Wednesday, February 16, 2011

NODE 1 NODE 2

Wednesday, February 16, 2011

Wednesday, February 16, 2011

NODE 1 NODE 2

Wednesday, February 16, 2011

NODE 1 NODE 2

REPLICATION

Wednesday, February 16, 2011

Fault handlers

e O
AllForOneStrategy(

problems,
maxNrOfRetries,
withinTimeRange)

OneForOneStrategy(
problems,
maxXNrOfRetries,

withinTimeRange)
_ /

Linking

-

_

link(actor)
unlink(actor)

startLink(actor)

spawnLink[MyActor]

,/

Supervision

4 A

class Supervisor extends Actor {
faultHandler = OneForOneStrategy(
List(classOf[Throwable])
5, 5000))

def receive = {
case Register(actor) =>
link(actor)

}
}
I\ ,/

Wednesday, February 16, 2011

Manage failure

}
\§

/,class FaultTolerantService extends Actor {

override def preRestart(reason: Throwable) = {
... // clean up before restart

}
override def postRestart(reason: Throwable) =
. // 1init after restart

}..

~

{

/

Wednesday, February 16, 2011

Declarative config

//;;pervisor supervisor = Supervisor(‘\\\

SupervisorConfig(
AllForOneStrategy(List(classOf[Exception]), 3, 1000),
Supervise(
actorl,
Permanent) ::
Supervise(
actor2,
Temporary) ::
Nil

N /

Wednesday, February 16, 2011

Actors

Wednesday, February 16, 2011

Remote Server

4)

// use host & port in config
Actor.remote.start()

Actor.remote.start("localhost”, 2552)

_ /

Scalable implementation based on
NIO (Netty) & Protobuf

Wednesday, February 16, 2011

Two types of
remote actors

Client initiated & managed
Server initiated & managed

Client-managed

supervision works across nodes

4)

import Actor.
val service = remote.actorOf[MyActor](host, port)

service ! message

_ /

Server-managed

register and manage actor on server
client gets “dumb” proxy handle

-

import Actor.

~

remote.register(“service:id”, actorOf[MyService])

L /

server part

Server-managed

val service = remote.actorFor(
“service:1d”,
“darkstar?”,
9999)

service ! message

client part

Server-managed

/s)

import Actor.

remote.register(actorOf[MyService])
remote.registerByUuid(actorOf[MyService])
remote.registerPerSession(

“service:id”, actorOf[MyService])

remote.unregister(“service:id”)
remote.unregister(actorRef)

_ /

server part

Wednesday, February 16, 2011

Remoting Security

//;kka { ‘\\

remote {
secure-cookie = "O50EQAODODO6010A00000900040DO6OFOCO9060B"
server {
require-cookie = on
untrusted-mode = on
}
}
}

o /

Erlang-style secure cookie

Actors

Wednesday, February 16, 2011

Cloudy Akka

. Subscription-based cluster membership service
* Highly available cluster registry for actors

* Highly available centralized configuration service
* Automatic replication with automatic fail-over

upon node crash

* Transparent and user-configurable load-balancing
'+ Transparent adaptive cluster rebalancing
¢ Leader election

—_—— e e

Wednesday, February 16, 2011

r

Akka
Cluster Node

r

Akka

Cluster Node

r

Akka
Cluster Node

(
Z OO Keeﬁe/‘

Ensenible

r

Akka
Cluster Node

r

Akka
Cluster Node

Wednesday, February 16, 2011

r

Akka
Cluster Node

r

Akka

Cluster Node

(7

r

Akka
Cluster Node

Z ocoKeeper
Ensenible

r

Akka
Cluster Node

r

Akka
Cluster Node

Wednesday, February 16, 2011

r

Ak

Akka
Cluwster Node

r

Ak

Cluster Node

Akka
C/uster Node

Cluster Node

(r7

Zoo Keeper
Ens eMA/ e

(‘

Akka

Cluster Node

Wednesday, February 16, 2011

Akka
Akka «/ .
Sfdf /1Stics
Dashboard
Ser\/er

r

Ak

Akka
Cluwster Node

(

Ak

Cluster Node

r

Akka

Cluster Node

(7

Zoo Kee/?er
Ens eMA/ e

(‘

Akka

Cluster Node

Cluster Node

Wednesday, February 16, 2011

Ak Ahka
Stadistics
Dashboard oty (
erver 4 ,é ,éa

Cluster Node

r

Ak
Cluster Node

Ak
Cluwster Node

Z ooKeef‘er
theMA/ e

~ a

Akka Akka
C/uster Node Cluster Node

Wednesday, February 16, 2011

Example:
Clustered Actors

// Ping Pong messages
@serializable sealed trait PingPong

case object Ball extends PingPong
case object Stop extends PingPong

Wednesday, February 16, 2011

Example:
Clustered Actors

@serializable class PingActor extends Actor {
var count = 0

def receive = {
case Ball =>
if (count < NrOfPings) {
println("---->> PING (%s)" format count)
count += 1
self reply Ball
} else {
self.sender.foreach(_!! Stop)
self.stop

Wednesday, February 16, 2011

Example:
Clustered Actors

| @serializable class PongActor extends Actor {
def receive = {
case Ball =>
self reply Ball

case Stop =>
self.stop

Wednesday, February 16, 2011

Example:
Clustered Actors

Cluster.startLocalCluster()

Cluster.newNode(NodeAddress(CLUSTER_NAME, "node@", port = 9991)).start
Cluster.newNode(NodeAddress (CLUSTER_NAME, "nodel", port = 9992)).start ::
Cluster.newNode(NodeAddress (CLUSTER_NAME, "node2", port = 9993)).start ::
Cluster.newNode(NodeAddress (CLUSTER_NAME, "node3", port = 9994)).start ::

, Cluster.newNode(NodeAddress (CLUSTER_NAME, "node4", port = 9995)).start :: Nil

val localNode
val remoteNodes

— _— — — — — — — = — — — —

Wednesday, February 16, 2011

Example:
Clustered Actors

| localNode store (classOf[PingActor])

Example:
Clustered Actors

Example:
Clustered Actors

| localNode store (classOf[PingActor])
- localNode store (classOf[PongActor], 5)

Wednesday, February 16, 2011

Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head

Wednesday, February 16, 2011

Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head

Wednesday, February 16, 2011

Example:
Clustered Actors

localNode store (classOf[PingActor])
. localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head

|

localNode.ref(

| val pong
|
U

Wednesday, February 16, 2011

Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head

\‘

l val pong = localNode.ref(
| actorId = PONG_SERVICE, router = Router.RoundRobin)

|

Wednesday, February 16, 2011

Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head

|

| val pong = localNode.ref(
| actorId = PONG_SERVICE, router = Router.RoundRobin)

|
' implicit val replyTo

Some (pong)

Wednesday, February 16, 2011

Example:
Clustered Actors

localNode store (classOf[PingActor])
localNode store (classOf[PongActor],

val ping = localNode.use[PingActor](actorId = PING_SERVICE).head
|
| val pong = localNode.ref(
| actorId = PONG_SERVICE, router = Router.RoundRobin)
|
' implicit val replyTo = Some(pong)
ping ! Ball // serve

Wednesday, February 16, 2011

How to run it!

4 Deploy as dependency JAR in WEB-INF/lib etc.

™M Run as stand-alone microkernel

¥ OSGi-enabled; drop in any OSGi container
(Spring DM server, Karaf etc.)

..and

STM
HTTP Fo
Camel
|TA Dataflow Guice
0SG TUBSUD L mop
Spring

Persistence Security

Use Akka from

Akka

Released today

http://jonasboner.com/
http://jonasboner.com/

http://akka.io

http://jonasboner.com/
http://jonasboner.com/

Wednesday, February 16, 2011

Akka

Wednesday, February 16, 2011

Camel: consumer
A

-

class MyConsumer extends Actor with Consumer
def endpointUri =

def receive = {
case msg: Message =>
log.info(format
msg.bodyAs(classOf[String]))

}

N /

Camel: consumer
I

-

class MyConsumer extends Actor with Consume
def endpointUri =

def receive = {
case msg: Message =>
reply(format
msg.bodyAs(classOf[String]))

}

\ /

http://0.0.0.0:8877/camel/test1
http://0.0.0.0:8877/camel/test1

Camel: producer

-

class CometProducer
extends Actor with Producer {

~

def endpointUri =
"cometd://localhost:8111/test™

< Y,

Camel: producer

-

\\iroducer | time

val time = "Current time: "

val producer = actorOf[CometProducer].sta

+ new Date

e

/

