
© 2012 SpringSource, A division of VMware. All rights reserved

Enterprise Java in 2012 and Beyond
From Java EE 6 To Cloud Computing
Jürgen Höller, Principal Engineer, SpringSource

22

Deployment Platforms: Becoming More Diverse

Tomcat

Application

Frameworks
+ Libs

Application

Frameworks
+ Libs

Application

Frameworks
+ Libs

 Cloud PlatformJava EE Server

33

The State of Deployment Platforms in 2011/2012

 Java EE servers having moved on to Java EE 6
• GlassFish 3
• JBoss 7
• WebSphere 8

 Apache Tomcat having moved on to Tomcat 7
• Servlet 3.0 based (Java EE 6 level)

 Cloud platforms becoming a serious option for regular
Java web application deployment
• Google App Engine: Jetty++
• Amazon Elastic Beanstalk: Tomcat++
• VMware's CloudFoundry: Tomcat++

44

Cloud Platforms

 a.k.a. „Platform as a Service“ (PaaS)
• „public cloud“: available through a shared, public host
• „private cloud“: virtualization platform inside a corporate data center

 Typically: a pre-installed web container with additional services
• datastores (not necessarily a relational database!)
• messaging, clustered sessions, clustered cache, etc

 The aforementioned Google App Engine and Amazon Elastic
Beanstalk are good reference examples
• common ground: WAR deployment, Servlet API, JPA – ignoring Java EE?
• several further offerings to show their promise in the course of 2012

55

CloudFoundry: VMware's Open Cloud Platform

66

Wide Variety of Data and Datastores

 Not all data resides in relational databases
• cloud environments often suggest alternatives for scalability reasons
• HBase, Redis, Mongo, Neo4j, etc

 Distributed caches add challenges as well
• not least of it all in terms of application-level access patterns
• GemFire, Coherence, Infinispan, etc

 Hardly any standardization available
• JSR-107 – for caching – did not make progress for a long, long time
• finally getting picked up in Java EE 7, but again only for caching
• alternative datastore space is too diverse for standardization

77

Wide Variety of Web Clients

 More and more client-side web technologies
• HTML 5 as a next-generation standard for desktop and mobile browsers
• native Android and iOS clients on smartphones and tablets

 Server-side state to be minimized or even removed completely
• in particular: no server-side user interface state
• strictly controlled user session state

 JSF's state-centric approach not a great fit anymore
• except for special kinds of applications (which it remains very useful for)
• web application backends and web services based on JAX-RS / MVC style
• nevertheless: JSF keeps evolving – JSF 2.2 coming up in 2012

88

HTML 5 on Mobile Devices

See mobilehtml5.org

99

Java SE 7: Concurrent Programming

 A challenge: concurrent programming in a multi-core world
• user-level APIs and recommended programming styles?

 Servers with more cores than concurrent requests
• how to actually use your processor power in such a scenario?

 Java SE 7: java.util.concurrent.ForkJoinPool
• specialized ForkJoinPools to be locally embedded within the application
• different kind of pool, separate from regular Runnable-oriented Executors

 Oracle's OpenJDK 7 released in summer 2011
• IBM JDK 7 followed surprisingly soon after

1010

Scala & Akka: Concurrent Programming Revisited

 Scala as a next-generation language on the JVM
• combines object orientation with functional programming
• particularly well suited for concurrent programming
• integrates reasonably well with existing Java APIs

 Akka as an actor-based framework for Scala and Java
• event-driven architectures

• strong architectural impact (if you fully go for it)
• different approach towards concurrent programming

• raises the concurrency abstraction level (but not too much)
• provides Scala and Java APIs

• however, being most convenient with Scala message passing

1111

Concurrent Programming: Then and Now

Higher-level patterns
for 2012 and beyond

The classic one

1212

Java EE 6 Revisited

 How relevant is Java EE 6 in the context of recent trends?
• as usual, Java EE 6 tends to solve yesterday's problems...
• the fate of specifications with a multi-year expert group process
• even worse, EE server vendors take years to implement a full platform release

 Some recent trends change this industry quite rapidly and radically
• cloud platforms challenge the notion of dedicated servers
• alternative datastores challenge relational databases and their access APIs
• concurrent programming trends do not match traditional EE assumptions

 Java EE 7 to the rescue in 2012?
• Let's see...

1313

A Quick Preview: Java EE 7

 A broad set of expected updates
• JCache (JSR-107)
• JAX-RS 2.0
• JMS 2.0
• JPA 2.1
• EJB 3.2
• CDI 1.1
• Bean Validation 1.1
• Servlet 3.1
• JSF 2.2

 Key theme: multi-tenancy for cloud environments

1414

Application Portability: Platform Generations?

Java EE 6

SAME
Application

Frameworks
+ Libs

SAME
Application

Frameworks
+ Libs

SAME
Application

Frameworks
+ Libs

 Java EE 7Java EE 5

1515

Java EE 7 Timeline

 Java EE 7 is certainly going to deliver key foundational updates
• the key question is: when, and how well adopted by major vendors?

 Umbrella specification scheduled to go final in Q4 2012
• more realistically, most individual specifications going final in late 2012
• with the full EE 7 umbrella specification not being ready before 2013

 Individual implementations for JCache, JMS 2.0, JPA 2.1 etc
• to be available in late 2012, for immediate use on Tomcat etc
• embedded into the application's deployment unit
• hard to use on top of existing EE servers due to API version conflicts

1616

Java EE in Cloud Environments

 Java EE 6 in mainstream cloud environments?
• Red Hat's OpenShift is based on JBoss AS 7 now

• nearly two years after the Java EE 6 specification release
• however, Oracle's cloud offering is just about to become fully

Java EE 6 compatible in early 2012
• more than two years after the Java EE 6 specification release

 Key problem: major cloud vendors not adopting Java EE at all
• but rather a more minimal selection of Java platform services

• typically Java SE + Servlet + JPA + custom cloud service APIs
• reconsider Google App Engine and Amazon Elastic BeansTalk

• also Cloud Foundry, Heroku, etc

1717

Key Elements of Spring: Ready for 2012 & Beyond

Simple
Object
Simple
ObjectsDe

pe
nd

en
cy

 In
je

ct
io

n

AOP

Portable Service Abstractions

More important than ever!

1818

Environment Abstraction

 Grouping bean definitions for activation in specific environments
• e.g. different stages: development, testing, production
• e.g. different deployment environments: Tomcat, EE server, Cloud Foundry
• resolution of placeholders from environment-specific property sources

 Environment association of specific bean definitions
• XML 'profile' attribute on <beans> element
• @Profile annotation on configuration classes
• @Profile annotation on individual component classes

 Ideally: no need to touch the deployment unit across different
stages/environments

1919

Cache Abstraction

 CacheManager and Cache abstraction
• in org.springframework.cache

• which up until 3.0 just contained EhCache support

• particularly important with the rise of distributed caching
• not least of it all: in cloud environments

 Backend adapters for EhCache, GemFire, Coherence, etc
• EhCache adapter shipping with Spring core
• plugging in custom adapters if necessary

 Specific cache setup per environment profile?
• potentially adapting to a runtime-provided cloud caching service

2020

Spring Web Applications on Servlet 3.0
/**
 * Automatically detected and invoked on startup by Spring's ServletContainerInitializer. May register listeners, filters, servlets etc against the given Servlet 3.0 ServletContext.
 */
public class MyWebAppInitializer implements WebApplicationInitializer {

 public void onStartup(ServletContext sc) throws ServletException {
 // Create the 'root' Spring application context
 AnnotationConfigWebApplicationContext root = new AnnotationConfigWebApplicationContext();
 root.scan("com.mycompany.myapp");
 root.register(FurtherConfig.class);

 // Manages the lifecycle of the root application context
 sc.addListener(new ContextLoaderListener(root));
 ...
 }
}

2121

Support for Java SE 7 & Java EE 7

 Java SE 7 is an important driver for Spring 3.x
• making best possible use of JRE 7 at runtime
• support for JDBC 4.1 in Spring 3.1
• as of Spring 3.2, building the framework against Java 7

• while preserving runtime compatibility with Java 5 and 6

 Early support for Java EE 7 related specifications
• coming in this year's Spring 3.2 generation as well
• JCache
• JMS 2.0
• JPA 2.1
• JSF 2.2
• Bean Validation 1.1

2222

Forward Compatibility with Java SE 8

 Java 8's language enhancements in mind already
• preparing Spring APIs for Java 8 lambda expressions

• a.k.a. Java 8 closures

 “Single Abstract Method“ (SAM) types
• interfaces with one method
• common in Spring already

• ResultSetExtractor
• RowMapper
• MessageCreator
• TransactionCallback

 Java 8 enhancements will work with existing versions of Spring
• once JDK 8 is released

2323

Beyond Spring Framework: Recent Key Projects

 Spring Data
• support for many alternative datastores
• GemFire, Hadoop, Redis, Mongo, Neo4j

 Spring AMQP
• messaging beyond JMS, e.g. for RabbitMQ

 Spring Mobile & Spring Android
• conveniences for mobile app development

 Spring Social
• programmatic access to social networks

2424

Summary

 Disruptive forces approaching the Enterprise Java space
• deployment to cloud platforms
• access to alternative datastores
• HTML 5 based web architectures
• concurrent programming challenges

 Common ground in deployment platforms is once again unclear
• selected specifications (Java SE, Servlet, JPA) as one key ingredient
• 'proprietary' APIs and embedded frameworks as another key ingredient

 Either way, there are exciting times ahead of us. Let's embrace them!

	Introducing Spring Framework 3.1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Environment Abstraction
	Cache Abstraction
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Spring 3.1 Release Plan

