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Deployment Platforms: Becoming More Diverse
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The State of Deployment Platforms in 2011/2012

 Java EE servers having moved on to Java EE 6
• GlassFish 3
• JBoss 7
• WebSphere 8

 Apache Tomcat having moved on to Tomcat 7
• Servlet 3.0 based (Java EE 6 level)

 Cloud platforms becoming a serious option for regular
Java web application deployment
• Google App Engine: Jetty++
• Amazon Elastic Beanstalk: Tomcat++
• VMware's CloudFoundry: Tomcat++
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Cloud Platforms

 a.k.a. „Platform as a Service“ (PaaS)
• „public cloud“: available through a shared, public host
• „private cloud“: virtualization platform inside a corporate data center

 Typically: a pre-installed web container with additional services
• datastores (not necessarily a relational database!)
• messaging, clustered sessions, clustered cache, etc

 The aforementioned Google App Engine and Amazon Elastic 
Beanstalk are good reference examples
• common ground: WAR deployment, Servlet API, JPA – ignoring Java EE?
• several further offerings to show their promise in the course of 2012
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CloudFoundry: VMware's Open Cloud Platform
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Wide Variety of Data and Datastores

 Not all data resides in relational databases
• cloud environments often suggest alternatives for scalability reasons
• HBase, Redis, Mongo, Neo4j, etc

 Distributed caches add challenges as well
• not least of it all in terms of application-level access patterns
• GemFire, Coherence, Infinispan, etc

 Hardly any standardization available
• JSR-107 – for caching – did not make progress for a long, long time
• finally getting picked up in Java EE 7, but again only for caching
• alternative datastore space is too diverse for standardization
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Wide Variety of Web Clients

 More and more client-side web technologies
• HTML 5 as a next-generation standard for desktop and mobile browsers
• native Android and iOS clients on smartphones and tablets

 Server-side state to be minimized or even removed completely 
• in particular: no server-side user interface state
• strictly controlled user session state

 JSF's state-centric approach not a great fit anymore
• except for special kinds of applications (which it remains very useful for)
• web application backends and web services based on JAX-RS / MVC style
• nevertheless: JSF keeps evolving – JSF 2.2 coming up in 2012
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HTML 5 on Mobile Devices

See mobilehtml5.org
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Java SE 7: Concurrent Programming

 A challenge: concurrent programming in a multi-core world
• user-level APIs and recommended programming styles?

 Servers with more cores than concurrent requests
• how to actually use your processor power in such a scenario?

 Java SE 7: java.util.concurrent.ForkJoinPool
• specialized ForkJoinPools to be locally embedded within the application
• different kind of pool, separate from regular Runnable-oriented Executors

 Oracle's OpenJDK 7 released in summer 2011
• IBM JDK 7 followed surprisingly soon after
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Scala & Akka: Concurrent Programming Revisited

 Scala as a next-generation language on the JVM
• combines object orientation with functional programming
• particularly well suited for concurrent programming
• integrates reasonably well with existing Java APIs

 Akka as an actor-based framework for Scala and Java
• event-driven architectures

• strong architectural impact (if you fully go for it)
• different approach towards concurrent programming

• raises the concurrency abstraction level (but not too much) 
• provides Scala and Java APIs

• however, being most convenient with Scala message passing
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Concurrent Programming: Then and Now

Higher-level patterns
for 2012 and beyond

The classic one
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Java EE 6 Revisited

 How relevant is Java EE 6 in the context of recent trends?
• as usual, Java EE 6 tends to solve yesterday's problems...
• the fate of specifications with a multi-year expert group process
• even worse, EE server vendors take years to implement a full platform release

 Some recent trends change this industry quite rapidly and radically
• cloud platforms challenge the notion of dedicated servers
• alternative datastores challenge relational databases and their access APIs
• concurrent programming trends do not match traditional EE assumptions

 Java EE 7 to the rescue in 2012?
• Let's see...
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A Quick Preview: Java EE 7

 A broad set of expected updates
• JCache (JSR-107)
• JAX-RS 2.0
• JMS 2.0
• JPA 2.1
• EJB 3.2
• CDI 1.1
• Bean Validation 1.1
• Servlet 3.1
• JSF 2.2

 Key theme: multi-tenancy for cloud environments



1414

Application Portability: Platform Generations?
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Java EE 7 Timeline

 Java EE 7 is certainly going to deliver key foundational updates
• the key question is: when, and how well adopted by major vendors?

 Umbrella specification scheduled to go final in Q4 2012
• more realistically, most individual specifications going final in late 2012
• with the full EE 7 umbrella specification not being ready before 2013

 Individual implementations for JCache, JMS 2.0, JPA 2.1 etc
• to be available in late 2012, for immediate use on Tomcat etc
• embedded into the application's deployment unit
• hard to use on top of existing EE servers due to API version conflicts
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Java EE in Cloud Environments

 Java EE 6 in mainstream cloud environments?
• Red Hat's OpenShift is based on JBoss AS 7 now

• nearly two years after the Java EE 6 specification release
• however, Oracle's cloud offering is just about to become fully

Java EE 6 compatible in early 2012
• more than two years after the Java EE 6 specification release

 Key problem: major cloud vendors not adopting Java EE at all
• but rather a more minimal selection of Java platform services

• typically Java SE + Servlet + JPA + custom cloud service APIs
• reconsider Google App Engine and Amazon Elastic BeansTalk

• also Cloud Foundry, Heroku, etc
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Key Elements of Spring: Ready for 2012 & Beyond
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Environment Abstraction

 Grouping bean definitions for activation in specific environments
• e.g. different stages: development, testing, production
• e.g. different deployment environments: Tomcat, EE server, Cloud Foundry
• resolution of placeholders from environment-specific property sources

 Environment association of specific bean definitions
• XML 'profile' attribute on <beans> element
• @Profile annotation on configuration classes
• @Profile annotation on individual component classes

 Ideally: no need to touch the deployment unit across different 
stages/environments
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Cache Abstraction

 CacheManager and Cache abstraction
• in org.springframework.cache

• which up until 3.0 just contained EhCache support

• particularly important with the rise of distributed caching
• not least of it all: in cloud environments

 Backend adapters for EhCache, GemFire, Coherence, etc
• EhCache adapter shipping with Spring core
• plugging in custom adapters if necessary

 Specific cache setup per environment profile?
• potentially adapting to a runtime-provided cloud caching service
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Spring Web Applications on Servlet 3.0
/**
 * Automatically detected and invoked on startup by Spring's ServletContainerInitializer. May register listeners, filters, servlets etc against the given Servlet 3.0 ServletContext.
 */
public class MyWebAppInitializer implements WebApplicationInitializer {

    public void onStartup(ServletContext sc) throws ServletException {
        // Create the 'root' Spring application context
        AnnotationConfigWebApplicationContext root =              new AnnotationConfigWebApplicationContext();
        root.scan("com.mycompany.myapp");
        root.register(FurtherConfig.class);

        // Manages the lifecycle of the root application context
        sc.addListener(new ContextLoaderListener(root));
        ...
    }
}
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Support for Java SE 7 & Java EE 7

 Java SE 7 is an important driver for Spring 3.x
• making best possible use of JRE 7 at runtime
• support for JDBC 4.1 in Spring 3.1
• as of Spring 3.2, building the framework against Java 7

• while preserving runtime compatibility with Java 5 and 6

 Early support for Java EE 7 related specifications
• coming in this year's Spring 3.2 generation as well
• JCache
• JMS 2.0
• JPA 2.1
• JSF 2.2
• Bean Validation 1.1
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Forward Compatibility with Java SE 8

 Java 8's language enhancements in mind already
• preparing Spring APIs for Java 8 lambda expressions

• a.k.a. Java 8 closures

 “Single Abstract Method“ (SAM) types
• interfaces with one method
• common in Spring already

• ResultSetExtractor
• RowMapper
• MessageCreator
• TransactionCallback

 Java 8 enhancements will work with existing versions of Spring
• once JDK 8 is released
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Beyond Spring Framework: Recent Key Projects

 Spring Data
• support for many alternative datastores
• GemFire, Hadoop, Redis, Mongo, Neo4j

 Spring AMQP
• messaging beyond JMS, e.g. for RabbitMQ

 Spring Mobile & Spring Android
• conveniences for mobile app development

 Spring Social
• programmatic access to social networks
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Summary

 Disruptive forces approaching the Enterprise Java space
• deployment to cloud platforms
• access to alternative datastores
• HTML 5 based web architectures
• concurrent programming challenges

 Common ground in deployment platforms is once again unclear
• selected specifications (Java SE, Servlet, JPA) as one key ingredient
• 'proprietary' APIs and embedded frameworks as another key ingredient

 Either way, there are exciting times ahead of us. Let's embrace them!
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