
It Is Possible to Do

Object-Oriented

Programming in Java

Kevlin Henney
kevlin@curbralan.com

@KevlinHenney

The Java programming language
platform provides a portable,
interpreted, high-performance,
simple, object-oriented
programming language and
supporting run-time environment.

http://java.sun.com/docs/white/langenv/Intro.doc.html#318

OOP to me means only messaging,
local retention and protection
and hiding of state-process, and
extreme late-binding of all
things. It can be done in
Smalltalk and in LISP. There are
possibly other systems in which
this is possible, but I'm not
aware of them.

Alan Kay

Ignorance

Apathy

Selfishness

Encapsulation

Inheritance

Polymorphism

Encapsulation

Polymorphism

Inheritance

Encapsulation

Polymorphism

Inheritance

encapsulate enclose (something) in or as if in a capsule.

 express the essential feature of (someone or something)
succinctly.

 enclose (a message or signal) in a set of codes which
allow use by or transfer through different computer
systems or networks.

 provide an interface for (a piece of software or hardware)
to allow or simplify access for the user.

The New Oxford Dictionary of English

A distinction between inheritance and

subtyping is not often made: classes

are often equated directly with types.

From a behavioural point of view a

type defines characteristics and a

class defines an implementation of

these characteristics.

Kevlin Henney

Distributed Object-Oriented Computing:

The Development and Implementation of an Abstract Machine

In many object-oriented programming languages the concept of
inheritance is present, which provides a mechanism for sharing code
among several classes of objects. Many people even regard inheritance
as the hallmark of object-orientedness in programming languages. We
do not agree with this view, and argue that the essence of object-
oriented programming is the encapsulation of data and operations in
objects and the protection of individual objects against each other. [...]

The author considers this principle of protection of objects against each
other as the basic and essential characteristic of object-oriented
programming. It is a refinement of the technique of abstract data types,
because it does not only protect one type of objects against all other
types, but one object against all other ones. As a programmer we can
consider ourselves at any moment to be sitting in exactly one object and
looking at all the other objects from outside.

Pierre America
"A Behavioural Approach to Subtyping in Object-Oriented Programming Languages"

Object-oriented programming does not have
an exclusive claim to all these good properties.
Systems may be modeled by other paradigms
[...]. Resilience can be achieved just as well by
organizing programs around abstract data
types, independently of taxonomies; in fact,
data abstraction alone is sometimes taken as
the essence of object orientation.

Martín Abadi and Luca Cardelli

A Theory of Objects

abstraction, n. (Logic)

 the process of formulating a generalized concept of

a common property by disregarding the differences

between a number of particular instances. On such

an account, we acquired the concept of red by

recognizing it as common to, and so abstracting it

from the other properties of, those individual

objects we were originally taught to call red.

 an operator that forms a class name or predicate

from any given expression.

E J Borowski and J M Borwein

Dictionary of Mathematics

 T RecentlyUsedList
{

new : RecentlyUsedList[T],
isEmpty : RecentlyUsedList[T] Boolean,

size : RecentlyUsedList[T] Integer,

add : RecentlyUsedList[T] Integer RecentlyUsedList[T],

get : RecentlyUsedList[T] Integer T,

equals : RecentlyUsedList[T] RecentlyUsedList[T] Boolean
}

class RecentlyUsedList

{

 private …

 public boolean isEmpty() …

 public int size() …

 public void add(String toAdd) …

 public String get(int index) …

 public boolean equals(RecentlyUsedList other) …

}

class RecentlyUsedList

{

 private …

 public boolean isEmpty() …

 public int size() …

 public void add(String toAdd) …

 public String get(int index) …

 public boolean equals(RecentlyUsedList other) …

 public boolean equals(Object other) …

}

class RecentlyUsedList

{

 private List<String> items = new ArrayList<String>();

 public boolean isEmpty()

 {

 return items.isEmpty();

 }

 public int size()

 {

 return items.size();

 }

 public void add(String toAdd)

 {

 items.remove(toAdd);

 items.add(toAdd);

 }

 public String get(int index)

 {

 return items.get(size() – index – 1);

 }

 public boolean equals(RecentlyUsedList other)

 {

 return other != null && items.equals(other.items);

 }

 public boolean equals(Object other)

 {

 return

 other instanceof RecentlyUsedList &&

 equals((RecentlyUsedList) other);

 }

}

typedef struct RecentlyUsedList RecentlyUsedList;

RecentlyUsedList * create();

void destroy(RecentlyUsedList *);

bool isEmpty(const RecentlyUsedList *);

int size(const RecentlyUsedList *);

void add(RecentlyUsedList *, int toAdd);

int get(const RecentlyUsedList *, int index);

bool equals(const RecentlyUsedList *, const RecentlyUsedList *);

struct RecentlyUsedList

{

 int * items;

 int length;

};

RecentlyUsedList * create()

{

 RecentlyUsedList * result = (RecentlyUsedList *) malloc(sizeof(RecentlyUsedList));

 result->items = 0;

 result->length = 0;

 return result;

}

void destroy(RecentlyUsedList * self)

{

 free(self->items);

 free(self);

}

bool isEmpty(const RecentlyUsedList * self)

{

 return self->length == 0;

}

int size(const RecentlyUsedList * self)

{

 return self->length;

}

static int indexOf(const RecentlyUsedList * self, int toFind)

{

 int result = -1;

 for(int index = 0; result == -1 && index != self->length; ++index)

 if(self->items[index] == toFind)

 result = index;

 return result;

}

static void removeAt(RecentlyUsedList * self, int index)

{

 memmove(&self->items[index], &self->items[index + 1], (self->length - index - 1) * sizeof(int));

 --self->length;

}

void add(RecentlyUsedList * self, int toAdd)

{

 int found = indexOf(self, toAdd);

 if(found != -1)

 removeAt(self, found);

 self->items = (int *) realloc(self->items, (self->length + 1) * sizeof(int));

 self->items[self->length] = toAdd;

 ++self->length;

}

int get(const RecentlyUsedList * self, int index)

{

 return self->items[self->length - index - 1];

}

bool equals(const RecentlyUsedList * lhs, const RecentlyUsedList * rhs)

{

 return lhs->length == rhs->length && memcmp(lhs->items, rhs->items, lhs->length * sizeof(int)) == 0;

}

struct RecentlyUsedList

{

 std::vector<int> items;

};

extern "C"

{

 RecentlyUsedList * create()

 {

 return new RecentlyUsedList;

 }

 void destroy(RecentlyUsedList * self)

 {

 delete self;

 }

 bool isEmpty(const RecentlyUsedList * self)

 {

 return self->items.empty();

 }

 int size(const RecentlyUsedList * self)

 {

 return self->items.size();

 }

 void add(RecentlyUsedList * self, int toAdd)

 {

 std::vector<int>::iterator found =

 std::find(self->items.begin(), self->items.end(), toAdd);

 if(found != self->items.end())

 self->items.erase(found);

 self->items.push_back(toAdd);

 }

 int get(const RecentlyUsedList * self, int index)

 {

 return self->items[self->items.size() - index - 1];

 }

 bool equals(const RecentlyUsedList * lhs, const RecentlyUsedList * rhs)

 {

 return lhs->items == rhs->items;

 }

}

OO ≡ ADT?

OO ≡ ADT /

William Cook, "On Understanding Data Abstraction, Revisited"

class RecentlyUsedList

{

 ...

 public boolean equals(RecentlyUsedList other)

 {

 return other != null && items.equals(other.items);

 }

 public boolean equals(Object other)

 {

 return

 other instanceof RecentlyUsedList &&

 equals((RecentlyUsedList) other);

 }

}

bool equals(const RecentlyUsedList * lhs, const RecentlyUsedList * rhs)

{

 return

 lhs->length == rhs->length &&

 memcmp(lhs->items, rhs->items, lhs->length * sizeof(int)) == 0;

}

extern "C"

{

 ...

 bool equals(const RecentlyUsedList * lhs, const RecentlyUsedList * rhs)

 {

 return lhs->items == rhs->items;

 }

}

Reflexivity: I am me. Symmetry: If you're the same
as me, I'm the same as you.

Transitivity: If I'm the same
as you, and you're the same
as them, then I'm the same
as them too.

Consistency: If there's no change,
everything's the same as it ever was.

Null inequality: I am not nothing.

Hash equality: If we're the same, we
both share the same magic numbers.

No throw: If you call,
I won't hang up.

Here are four common pitfalls that can cause
inconsistent behavior when overriding equals:

1. Defining equals with the wrong signature.

2. Changing equals without also changing hashCode.

3. Defining equals in terms of mutable fields.

4. Failing to define equals as an equivalence relation.

Martin Odersky, Lex Spoon and Bill Venners
"How to Write an Equality Method in Java"
http://www.artima.com/lejava/articles/equality.html

Here are four common pitfalls that can cause
inconsistent behavior when overriding equals:

1. Defining equals with the wrong signature.

2. Changing equals without also changing hashCode.

3. Relying on equals and hashCode to be invariant
when they depend on mutable fields.

4. Failing to define equals as an equivalence relation.

Here are four common pitfalls that can cause
inconsistent behavior when overriding equals:

1. Defining equals with the wrong signature.

2. Changing equals without also changing hashCode.

3. Failing to define equals as an equivalence relation.

4. Relying on equals and hashCode to be invariant
when they depend on mutable fields.

bool equals(

 const RecentlyUsedList * lhs, const RecentlyUsedList * rhs)

{

 bool result = size(lhs) == size(rhs);

 for(int index = 0; result && index != size(lhs); ++index)

 result = get(lhs, index) == get(rhs, index);

 return result;

}

extern "C" bool equals(

 const RecentlyUsedList * lhs, const RecentlyUsedList * rhs)

{

 bool result = size(lhs) == size(rhs);

 for(int index = 0; result && index != size(lhs); ++index)

 result = get(lhs, index) == get(rhs, index);

 return result;

}

class RecentlyUsedList

{

 ...

 public boolean equals(RecentlyUsedList other)

 {

 boolean result = other != null && size() == other.size();

 for(int index = 0; result && index != size(); ++index)

 result = get(index).equals(other.get(index));

 return result;

 }

 public boolean equals(Object other)

 {

 return

 other instanceof RecentlyUsedList &&

 equals((RecentlyUsedList) other);

 }

}

One of the most pure object-oriented

programming models yet defined is the

Component Object Model (COM). It

enforces all of these principles rigorously.

Programming in COM is very flexible and

powerful as a result. There is no built-in notion

of equality. There is no way to determine if

an object is an instance of a given class.

William Cook

"On Understanding Data Abstraction, Revisited"

class RecentlyUsedList

{

 ...

 public boolean equals(RecentlyUsedList other)

 {

 boolean result = other != null && size() == other.size();

 for(int index = 0; result && index != size(); ++index)

 result = get(index).equals(other.get(index));

 return result;

 }

 public boolean equals(Object other)

 {

 return

 other instanceof RecentlyUsedList &&

 equals((RecentlyUsedList) other);

 }

}

class RecentlyUsedList

{

 ...

 public boolean equals(RecentlyUsedList other)

 {

 boolean result = other != null && size() == other.size();

 for(int index = 0; result && index != size(); ++index)

 result = get(index).equals(other.get(index));

 return result;

 }

}

In a purist view of object-oriented methodology,
dynamic dispatch is the only mechanism for

taking advantage of attributes that have been

forgotten by subsumption. This position is often

taken on abstraction grounds: no knowledge
should be obtainable about objects except by

invoking their methods. In the purist approach,

subsumption provides a simple and effective

mechanism for hiding private attributes.

Martín Abadi and Luca Cardelli, A Theory of Objects

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

William Cook, "On Understanding Data Abstraction, Revisited"

William Cook, "On Understanding Data Abstraction, Revisited"

interface RecentlyUsedList

{

 boolean isEmpty();

 int size();

 void add(String toAdd);

 String get(int index);

 boolean equals(RecentlyUsedList other);

}

class RecentlyUsedListImpl

 implements RecentlyUsedList

{

 private List<String> items = …;

 public boolean isEmpty() …

 public int size() …

 public void add(String toAdd) …

 public String get(int index) …

 public boolean equals(RecentlyUsedList other) …

 public boolean equals(Object other) …

}

class ArrayListBasedRecentlyUsedList

 implements RecentlyUsedList

{

 private List<String> items = …;

 public boolean isEmpty() …

 public int size() …

 public void add(String toAdd) …

 public String get(int index) …

 public boolean equals(RecentlyUsedList other) …

 public boolean equals(Object other) …

}

class RandomAccessRecentlyUsedList

 implements RecentlyUsedList

{

 private List<String> items = …;

 public boolean isEmpty() …

 public int size() …

 public void add(String toAdd) …

 public String get(int index) …

 public boolean equals(RecentlyUsedList other) …

 public boolean equals(Object other) …

}

RecentlyUsedList list =

 new RandomAccessRecentlyUsedList();

class RandomAccessRecentlyUsedList implements RecentlyUsedList

{

 ...

 public boolean equals(RecentlyUsedList other)

 {

 boolean result = other != null && size() == other.size();

 for(int index = 0; result && index != size(); ++index)

 result = get(index).equals(other.get(index));

 return result;

 }

 public boolean equals(Object other)

 {

 return

 other instanceof RecentlyUsedList &&

 equals((RecentlyUsedList) other);

 }

}

Here are five common pitfalls that can cause
inconsistent behavior when overriding equals:

1. Defining equals with the wrong signature.

2. Changing equals without also changing hashCode.

3. Failing to define equals as an equivalence relation.

4. Defining equals in a class hierarchy where types
and classes are not properly distinguished.

5. Relying on equals and hashCode to be invariant
when they depend on mutable fields.

William Cook, "On Understanding Data Abstraction, Revisited"

newRecentlyUsedList =
 (let items = ref()

{
isEmpty = #items = 0,

size = #items,

add = x
items := xˆitemsy y 0...#items itemsy x,

get = i itemsi

})

var newRecentlyUsedList = function() {

 var items = []

 return {

 isEmpty: function() {

 return items.length === 0

 },

 size: function() {

 return items.length

 },

 add: function(newItem) {

 (items = items.filter(function(item) {

 return item !== newItem

 })).unshift(newItem)

 },

 get: function(index) {

 return items[index]

 }

 }

}

One of the most powerful mechanisms for
program structuring [...] is the block and
procedure concept. [...]

A procedure which is capable of giving rise to
block instances which survive its call will be
known as a class; and the instances will be
known as objects of that class. [...]

A call of a class generates a new object of that
class.

Ole-Johan Dahl and C A R Hoare
"Hierarchical Program Structures" in Structured Programming

var newEmptyRecentlyUsedList = function() {

 return {

 isEmpty: function() {

 return true

 },

 size: function() {

 return 0

 },

 add: function(newItem) {

 var inserted = newInsertedRecentlyUsedList(newItem)

 this.isEmpty = inserted.isEmpty

 this.size = inserted.size

 this.add = inserted.add

 this.get = inserted.get

 },

 get: function(index) {

 }

 }

}

var newInsertedRecentlyUsedList = function(initialItem) {

 var items = [initialItem]

 return {

 isEmpty: function() {

 return false

 },

 size: function() {

 return items.length

 },

 add: function(newItem) {

 (items = items.filter(function(item) {

 return item !== newItem

 })).unshift(newItem)

 },

 get: function(index) {

 return items[index]

 }

 }

}

var newRecentlyUsedList = function() {

 var items = []

 return {

 isEmpty: function() {

 return items.length === 0

 },

 size: function() {

 return items.length

 },

 add: function(newItem) {

 (items = items.filter(function(item) {

 return item !== newItem

 })).unshift(newItem)

 },

 get: function(index) {

 return items[index]

 }

 }

}

var newRecentlyUsedList = function() {

 var items = []

 return {

 ...

 supertypeOf: function(that) {

 return that &&

 that.isEmpty && that.size && that.add &&

 that.get && that.supertypeOf && that.equals

 },

 equals: function(that) {

 var result =

 this.supertypeOf(that) &&

 that.supertypeOf(this) &&

 this.size() === that.size()

 for(var i = 0; result && i !== this.size(); ++i)

 result = this.get(i) === that.get(i)

 return result

 }

 }

}

Paradigms lost?

Or paradigms regained?

The venerable master Qc Na was walking with his student, Anton.

Hoping to prompt the master into a discussion, Anton said "Master, I

have heard that objects are a very good thing — is this true?" Qc Na

looked pityingly at his student and replied, "Foolish pupil — objects

are merely a poor man's closures."

Chastised, Anton took his leave from his master and returned to his

cell, intent on studying closures. He carefully read the entire "Lambda:

The Ultimate..." series of papers and its cousins, and implemented a

small Scheme interpreter with a closure-based object system. He

learned much, and looked forward to informing his master of his

progress.

On his next walk with Qc Na, Anton attempted to impress his master

by saying "Master, I have diligently studied the matter, and now

understand that objects are truly a poor man's closures." Qc Na

responded by hitting Anton with his stick, saying "When will you learn?

Closures are a poor man's object." At that moment, Anton became

enlightened.

http://people.csail.mit.edu/gregs/ll1-discuss-archive-html/msg03277.html

