
Angelika Langer
www.AngelikaLanger.com

The Art of
Garbage Collection Tuning

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (2)

objective
• discuss garbage collection algorithms in Sun/Oracle's JVM
• give brief overview of GC tuning strategies

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (3)

agenda

• generational GC
• parallel GC
• concurrent GC
• "garbage first" (G1)
• GC tuning

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (4)

three typical object lifetime
areas

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (5)

generational GC

• key idea:
– incorporate this typical object lifetime structure into GC

architecture

• statically:
– different heap areas for objects with different lifetime

• dynamically:
– different GC algorithms for objects with different lifetime

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (6)

static heap structure

lifetime

eden survivor
spaces old (generation) perm

young generation

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (7)

• mark-and-copy GC on young gen:
collect objects with a short and short-to-medium lifetime
– fast algorithm, but requires more space
– enables efficient allocation afterwards
– frequent and short pauses (minor GC)

• mark-and-compact GC on old gen:
collect objects which a medium-to-long and long lifetime
– slow algorithm, but requires little space
– avoids fragmentation and enables efficient allocation
– rare and long pauses (full GC)

different algorithms

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (8)

promotion

• aging and promotion
– live objects are copied between survivor spaces and eventually to

old generation

• how often live objects are copied between survivor spaces
depends on ...
– size of survivor space

– number of live objects in eden and old survivor space

– age threshold

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (9)

agenda

• generational GC
• parallel GC
• concurrent GC
• "garbage first" (G1)
• GC tuning

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (10)

multicore & multi-cpu
architectures

• parallel GC means:
– several GC threads + "stop-the-world"

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (11)

parallel GC

• parallel young GC (since 1.4.1)
– mark-sweep-copy

• parallel old GC (since 5.0_u6)
– mark-sweep-compact
– mostly parallel, i.e. has a serial phase

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (12)

• mark phase (parallel)
– put all root pointers into a work queue
– GC threads take tasks (i.e. root pointers) from work queue
– GC threads put subsequent tasks (branches) into queue

– work stealing: GC threads with empty queue "steal work" from another
thread's queue (requires synchronization)

• copy phase (parallel)
– challenge in parallel GC: many threads allocate objects in to-space
– requires synchronization among GC threads
– use thread local allocation buffers (GCLAB)

parallel young GC

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (13)

parallel old GC

• marking phase (parallel)
– divide generation into fixed-sized regions => one GC thread per region
– marks initial set of directly reachable live objects
– keep information about size and location of live objects per region

• summary phase (serial)
– determine dense prefix

• point between densely and loosely populated part of generation

– no objects are moved in dense prefix
– loosely populated region is compacted

• compaction phase (parallel)
– identify empty regions via summary data
– parallel GC threads copy data into empty regions

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (14)

agenda

• generational GC
• parallel GC
• concurrent GC
• "garbage first" (G1)
• GC tuning

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (15)

concurrent old generation
GC

• concurrent GC means:
– no "stop-the-world"
– one or several GC threads run concurrently with application

threads

• concurrent old GC (since 1.4.1)
– concurrent mark-and-sweep GC algorithm (CMS)
– goal: shorter pauses
– runs mark-and-sweep => no compaction
– works mostly concurrent, i.e. has stop-the-world phases

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (16)

serial vs. concurrent old gc

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (17)

concurrent old GC - details
• several phases

– initial marking phase (serial)
– marking phase (concurrent)
– preclean phase (concurrent)
– remarking phase (parallel)
– sweep phase (concurrent)

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (18)

concurrent old GC - details
• initial marking (serial)

– identifies initial set of live objects

• marking phase (concurrent)
– scans live objects
– application modifies reference graph during marking

=> not all live objects are guaranteed to be marked
– record changes for remark phase via write barriers
– multiple parallel GC threads (since 6.0)

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (19)

concurrent old GC - details
• preclean (concurrent)

– concurrently performs part of remarking work

• remarking (serial)
– finalizes marking by revisiting objects modified during marking
– some dead objects may be marked as alive

=> collected in next round (floating garbage)
– multiple parallel GC threads (since 5.0)

• sweep (concurrent)
– reclaim all dead objects
– mark as alive all objects newly allocated by application

• prevents them from getting swept out

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (20)

CMS trace
• use -verbose:gc and -XX:+PrintGCDetails for details

[GC [1 CMS-initial-mark: 49149K(49152K)] 52595K(63936K), 0.0002292 secs]

[CMS-concurrent-mark: 0.004/0.004 secs]

[CMS-concurrent-preclean: 0.004/0.004 secs]

[CMS-concurrent-abortable-preclean: 0.000/0.000 secs]

[GC[YG occupancy: 3445 K (14784 K)]

[Rescan (parallel) , 0.0001846 secs]

[weak refs processing, 0.0000026 secs]

[1 CMS-remark: 49149K(49152K)] 52595K(63936K), 0.0071677 secs]

[CMS-concurrent-sweep: 0.002/0.002 secs]

[CMS-concurrent-reset: 0.000/0.000 secs]

non-concurrent mark
concurrent mark

concurrent preclean

non-concurrent re-mark

concurrent sweep
concurrent reset

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (21)

no mark and compact ...
CMS does not compact

– compacting cannot be done concurrently

downsides:
• fragmentation

– requires larger heap sizes

• expensive memory allocation
– no contiguous free space to allocate from
– must maintain free lists = links to unallocated memory regions of a certain size
– adverse affect on young GC (allocation in old gen happens during promotion)

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (22)

fall back to serial GC
• CMS might not be efficient enough

– to prevent low-memory situations

• CMS falls back to serial mark-sweep-compact
– causes unpredictable long stop-the-world pauses

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (23)

fall back to serial GC
[GC [1 CMS-initial-mark: 49149K(49152K)] 63642K(63936K), 0.0007233 secs]

[CMS-concurrent-mark: 0.004/0.004 secs]

[CMS-concurrent-preclean: 0.004/0.004 secs]

[CMS-concurrent-abortable-preclean: 0.000/0.000 secs]

[GC[YG occupancy: 14585 K (14784 K)]

[Rescan (parallel) , 0.0050833 secs]

[weak refs processing, 0.0000038 secs]

[1 CMS-remark: 49149K(49152K)] 63735K(63936K), 0.0051317 secs]

[CMS-concurrent-sweep: 0.002/0.002 secs]

[CMS-concurrent-reset: 0.000/0.000 secs]

[Full GC [CMS: 49149K->49149K(49152K), 0.0093272 secs] 63932K->63932K(63936K),

[CMS Perm : 1829K->1829K(12288K)], 0.0093618 secs]

[GC [1 CMS-initial-mark: 49149K(49152K)] 63933K(63936K), 0.0007206 secs]

java.lang.OutOfMemoryError

Heap

par new generation total 14784K, used 14784K

eden space 13184K, 100% used

from space 1600K, 100% used

to space 1600K, 0% used

concurrent mark-sweep generation total 49152K, used 49150K

concurrent-mark-sweep perm gen total 12288K, used 1834K

concurrent GC

serial GC

out of memory

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (24)

concurrent mark-and-sweep
• decreases old generation pauses

• at the expense of
– slightly longer young generation pauses
– some reduction in throughput
– extra heap size requirements

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (25)

agenda

• generational GC
• parallel GC
• concurrent GC
• "garbage first" (G1)
• GC tuning

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (26)

garbage-first (G1) garbage
collector

• available since Java 6 update 14 (experimental)

• features:
– compacting

• no fragmentation

– more predictable pause times
• no fall back to serial GC

– ease-of-use regarding tuning
• self adjustment; barely any options

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (27)

general approach

• heap split into regions (+ perm)
– 1 MByte each

• young region
+ old region
– dynamically arranged
– non-contiguous

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (29)

young regions: collection
• copy live objects from young regions to survivor region(s)

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (30)

young collection (details)
• coping of live objects = evacuation pause

– stop-the-world, i.e. no concurrent execution of application
• no good !!!

• but: evacuation is parallel
– performed by multiple GC threads

• good !!!

• parallel GC threads
– GC operation is broken into independent tasks (work stealing):

• determine live objects (marking stack)
• copy live objects via GCLAB (similar to TLAB during allocation)

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (31)

old regions: collection
• idea: collect regions with most garbage first

– hence the name: "garbage-first"

• approach:
– some regions may contain no live objects

• very easy to collect, no coping at all

– some regions may contain few live objects
• live objects are copied (similar to young collection)

– some regions may contain many live objects
• regions not touched by GC

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (32)

old regions: collection (cont.)

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (33)

regions considered for GC
evacuation

• collection set = regions considered for evacuation

• generational approach
– sub-modes:

• fully young: only young regions
• partially young: young regions + old regions as pause time allows
• GC switches mode dynamically

• which regions are put into the collection set ?
– dynamically determined during program execution
– based on a global marking that reflects a snapshot of the heap

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (34)

note
• young and old regions have more similarities than before

• but still differences, i.e. it is generational GC
– young regions:

•where new objects are allocated
•always evacuated
•certain optimizations (e.g. no write barriers for remembered set update)

– old regions:
•only evacuated if time allows
•only evacuated if full of garbage ("garbage-first")

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (35)

benefits
• highly concurrent

– most phases run concurrently with the application
• some write barriers
• some non-concurrent marking phases (similar to CMS)

– even GC phases run concurrently
• evacuation runs while global snapshot is marked

• highly parallel
– multiple threads in almost all phases

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (36)

benefits (cont.)
• fully self-adapting

– just specify: max pause interval + max pause time
– collection set is chosen to meet the goals

• based on figures from various book keepings
• e.g. previous evacuations, snapshot marking, write barriers

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (37)

agenda

• generational GC
• parallel GC
• concurrent GC
• "garbage first" (G1)
• GC tuning

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (38)

• different applications require different GC behavior
– no one-size-fits-all solution regarding GC and performance

• user aspects:
– throughput
– pauses

• engineering aspects:
– footprint
– scalability
– promptness

know your goals

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (39)

profiling before you tune

• purpose
– determine status quo
– gather data for subsequent verification of successful

tuning

• two sources
– GC trace from JVM
– profiling and monitoring tools

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (40)

JVM options
-verbose:GC

-XX:+PrintGCDetails

– switch on GC trace
– details variry with different collectors

-XX:+PrintGCApplicationConcurrentTime

-XX:+PrintGCApplicationStoppedTime

– measure the amount of time the applications runs between collection pauses and
the length of the collection pauses

Application time: 0.5291524 seconds

[GC [DefNew: 3968K->64K(4032K), 0.0460948 secs] 7451K->

6186K(32704K), 0.0462350 secs]

Total time for which application threads were stopped:

0.0468229 seconds

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (41)

JVM options
-XX:+PrintGCTimeStamps

– enables calculation of total time, throughput, etc.
–Xloggc:<filename>

– redirect GC trace to output file
-XX:+PrintTenuringDistribution

– how often objects are copied between survivor spaces
-XX:+PrintHeapAtGC

– prints description of heap before and after GC
– produces massive amounts of output

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (42)

{Heap before GC invocations=1:

Heap

def new generation total 576K, used 561K [0x02ad0000, 0x02b70000, 0x02fb0000)

eden space 512K, 97% used [0x02ad0000, 0x02b4c7e8, 0x02b50000)

from space 64K, 100% used [0x02b60000, 0x02b70000, 0x02b70000)

to space 64K, 0% used [0x02b50000, 0x02b50000, 0x02b60000)

tenured generation total 1408K, used 172K [0x02fb0000, 0x03110000, 0x06ad0000)

the space 1408K, 12% used [0x02fb0000, 0x02fdb370, 0x02fdb400, 0x03110000)

compacting perm gen total 8192K, used 2433K [0x06ad0000, 0x072d0000, 0x0aad0000)

the space 8192K, 29% used [0x06ad0000, 0x06d305e8, 0x06d30600, 0x072d0000)

No shared spaces configured.

Heap after GC invocations=2:

Heap

def new generation total 576K, used 20K [0x02ad0000, 0x02b70000, 0x02fb0000)

eden space 512K, 0% used [0x02ad0000, 0x02ad0000, 0x02b50000)

from space 64K, 31% used [0x02b50000, 0x02b55020, 0x02b60000)

to space 64K, 0% used [0x02b60000, 0x02b60000, 0x02b70000)

tenured generation total 1408K, used 236K [0x02fb0000, 0x03110000, 0x06ad0000)

the space 1408K, 16% used [0x02fb0000, 0x02feb1b8, 0x02feb200, 0x03110000)

compacting perm gen total 8192K, used 2433K [0x06ad0000, 0x072d0000, 0x0aad0000)

the space 8192K, 29% used [0x06ad0000, 0x06d305e8, 0x06d30600, 0x072d0000)

No shared spaces configured.

}

heap snapshots

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (43)

GC trace analyzer -
GCViewer

• GCViewer
– freeware GC trace analyzer
– until 2008 by Hendrik Schreiber at

http://www.tagtraum.com/gcviewer.html

– until 2008 by Jörg Wüthrich at
https://github.com/chewiebug/GCViewer

• reads JVM's GC log file
– post-mortem or periodically

• produces diagrams and metrics
– throughput
– pauses
– footprint

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (44)

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (45)

JVM monitor - VisualGC
• VisualGC

– experimental utility (since JDK 1.4)
– dowload from java.sun.com/performance/jvmstat/visualgc.html

• integrated into VisualVM
– download the VisualGC plugin (since JDK 6_u7)

• dynamically tracks and displays the heap
– dynamic diagrams of all heap areas
– no metrics at all

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (46)

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (47)

tuning for maximum
throughput

• strategy #1: increase heap size
– reduced overall need for GC

• strategy #2: let objects die in young generation
– GC in old generation is more expensive than in young

generation
– prevent promotion of medium lifetime objects into old

generation

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (48)

let objects die in young
generation• increase young generation size

– only limited by need for old generation size

• keep objects in survivor space
– increase survivors space
– raise occupancy threshold
– raise age threshold
– pro: prevents promotion of medium lifetime objects
– con: needlessly copies around long lifetime objects

• use parallel young GC
– increases throughput, if >>2 CPUs available

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (49)

tuning for minimal pause
time

• use parallel GC (parallel young and parallel compact)

– reduces pause time, if >>2 CPUs available

• use concurrent GC (CMS)

– pro: mostly concurrent
– con: fragmentation + more expensive young GC

• try out "G1"
– designed to limit pause time and frequency

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (50)

tuning CMS

• strategy: avoid stop-the-world pauses
– reduce duration of full GC
– avoid full GC altogether

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (51)

prevent fallback to stop-the-
world GC

• increase heap size
– defers the problems ("night time GC")

• start CMS early, i.e. lower occupancy threshold
– reduces throughput because GC runs practically all the time

• increase young generation size
– avoids fragmentation in the first place

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (52)

tuning G1
• tuning G1 is different from classic GCs

– generation sizes irrelevant
•dynamically determined by G1 algorithms

– still relevant: absolute memory size
•grant as much memory as you can

• only 2 tuning parameters:
– max pause + min interval

interval

pause

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (53)

G1 tuning options
• MaxGCPauseMillis

– upper limit for length of pause
– what you demand from the GC

• GCPauseIntervalMillis

– lower limit for length of interval in which GC pauses occur
– how much GC activity you allow
– short interval => many pauses in rapid succession

• defaults (might be too relaxed, for smaller apps)
– GCPauseIntervalMillis = 500 ms
– MaxGCPauseMillis = 200 ms

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (54)

G1 tuning

• G1 "feels sluggish"
– tuning goals are usually NOT met

• high variance compared to classic GCs
– results differ even with identical tuning parameters

• G1 does not like overtuning
– relaxed goal yields better results than ambitious goal

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (55)

observations
• ambition is no good

– raise pause time goal, i.e. demand shorter pause
– (e.g. only 50 ms pause within 500 ms interval = 90% throughput)

– result: G1 tries harder
• make more pauses
• often fails to reach the goal (pause time exceeds limit)

• relaxing is good
– relax interval goal, i.e. allow more pauses
– (e.g. 100 ms pause within 200 ms interval = only 50% throughput)

– result: gives G1 more latitude and more flexibility
• even pause times might decrease (without loss of throughput)
• also avoids full GCs

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (56)

wrap-up

• generational GC
– split heap into generations
– use different algorithms for each region

• young generation
– mark-and copy (either serial or parallel)

• many short stop-the-world pauses
• needs survivor spaces

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (57)

wrap-up

• old generation
– mark-and-compact (either serial or parallel)

• few gigantic stop-the-world pauses
• no fragmentation

– concurrent mark-and-sweep (CMS)
• runs concurrently with the application
• few short stop-the-world pauses (either serial or parallel)
• falls back to mark-and-compact if needed

• "garbage first" (G1)
• highly dynamic + very complex + hard to tune

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (58)

wrap-up

• main tuning goals
– throughput and pause times

• maximize throughput
– let objects die in young generation

• minimize pauses times
– avoid stop-the-world pauses

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (59)

authors

Angelika LangerAngelika Langer
Training & Consulting

Klaus Klaus KreftKreft
Performance Consultant, Germany

http://www.AngelikaLanger.com

© Copyright 2003-2012 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 2/14/2012,15:09 GC tuning (60)

garbage collection tuning

Q & A

