Building
Scalable,
Highly Concurrent &

Fault- lolerant
Systems:
L essons Learned

Jonas Boner

CTO lypesafe

ﬁ Typesafe Twitter: @jboner




Z coil/ never
Z woill never
Z eoill never
Z coill never
I eoill never
Z woill never
Z i/l never
Z eoill never
Z coill never
I eoil! never
Z will never
Z woill never
Z eoill never
Z eoill never
Z woill never
Z coill never
Z woill never
Z coill never
L coill never
Z eoill never
Z eoill never
Z woill never
Z eoill never
Z coill never
Z eoill never
Z eorll never
Z woill never

L coil! never

wuse distributed transactions
wUSe distributed transactions
use distribeded transactions
USe distributed transactions
wUSe distributed transactions
USe distributed transactions
wUSe distributed transactions
wUSe distribeded Hransactions
wUSe distributed transactions
USe distributed transactions
USe distribeded Hransactions
wUSe distributed transactions
USe distribeded Hransactions
USe distribuded ransactions
wUSe distributed transactions
wUSe distribeded Hransactions
wUSe distributed transactions
wUSe distribeded Hransactions
USe distributed transactions
USe distribeded Hransactions
uUSe distributed transactions
wUSe distributed transactions
wUSe distribeded Hransactions
wUSe distributed transactions
USe distribeded Hransactions
wUSe distributed transactions
wUSe distributed transactions

wse distributed transactions

dga/‘n
dga/n
aga/n
62362//7
62\962//7
aga/n
62362/‘/7
aga/n
62362//7
62\962//7
aga/n
dga/n
aga/n
62362/‘/7
dga/n
aga/n
62\962//7
aga/n
62362/‘17
aga/n
62362/‘/7
dga/n
dga/n
62362//7
aga/n
62362/‘/7
dja/n

62362//7

Z coill never
Z i/l never
Z eoill never
Z i/l never
Z eoil! never
Z coil/ never
Z i/l never
Z eoill never
Z i/l never
Z eoill never
Z coil! never
Z i/l never
Z eoill never
Z eoill never
Z i/l never

I ol never

Z eoil/ never
Z coill never
Z i/l never
Z coill never
Z eoill never
Z i/l never

Z woil! never

USe distributed transactions
USe distribuded transactions
wUSe distribeded transactions
USe distributed transactions
wUSe distribeded Hransactions
USe distribeded transactions
USe distributed transactions
USe distribeded transactions
USe distributed transactions
wUSe distribeded Hransactions
USe distribiuded transactions
USe distributed transactions
USe distribeded transactions
USe distribuded transactions
USe distributed transactions
USe distribieded transactions
USe distribeded transactions
USe distribuded transactions
USe distribuded transactions
USe distribeded ransactions
USe distribuded transactions
USe distributed transactions

wUse distribeted transactions

62362//7
dgd/‘n
dgd/‘n
dﬂa/n
dgd/‘n
62362//7
dﬂd/n
dgd/‘n
dga/n
dgd/‘n
62362//7
dga/‘n
dja/‘n
62362//7
dga/‘n
62362//7
dﬂd/‘n
62362//7
62362/‘/7
dﬁa/‘n
62362//7
dga/‘n

aga/n



Z coil/ never
Z woill never
Z eoill never
Z coill never
I eoill never
Z woill never
Z i/l never
Z eoill never
Z coill never
I eoil! never
Z will never
Z woill never
Z eoill never
Z eoill never
Z woill never
Z coill never
Z woill never
Z coill never
L coill never
Z eoill never
Z eoill never
Z woill never
Z eoill never
Z coill never
Z eoill never
Z eorll never
Z woill never

L coil! never

wuse distributed transactions
wUSe distributed transactions
use distribeded transactions
USe distributed transactions
wUSe distributed transactions
USe distributed transactions
wUSe distributed transactions
wUSe distribeded Hransactions
wUSe distributed transactions
USe distributed transactions
USe distribeded Hransactions
wUSe distributed transactions
USe distribeded Hransactions
USe distribuded ransactions
wUSe distributed transactions
wUSe distribeded Hransactions
wUSe distributed transactions
wUSe distribeded Hransactions
USe distributed transactions
USe distribeded Hransactions
uUSe distributed transactions
wUSe distributed transactions
wUSe distribeded Hransactions
wUSe distributed transactions
USe distribeded Hransactions
wUSe distributed transactions
wUSe distributed transactions

wse distributed transactions

dga/‘n
dga/n
aga/n
62362//7
62\962//7
aga/n
62362/‘/7
aga/n
62362//7
62\962//7
aga/n
dga/n
aga/n
62362/‘/7
dga/n
aga/n
62\962//7
aga/n
62362/‘17
aga/n
62362/‘/7
dga/n
dga/n
62362//7
aga/n
62362/‘/7
dja/n

62362//7

Z coill never
Z i/l never
Z eoill never
Z i/l never
Z eoil! never
Z coil/ never
Z i/l never
Z eoill never
Z i/l never
Z eoill never
Z coil! never
Z i/l never
Z eoill never
Z eoill never
Z i/l never

I ol never

Z eoil/ never
Z coill never
Z i/l never
Z coill never
Z eoill never
Z i/l never
Z eoill never
Z i/l never
Z coill never
Z eoill never
Z i/l never

I !l never

USe distributed transactions
USe distribuded transactions
wUSe distribeded transactions
USe distributed transactions
wUSe distribeded Hransactions
USe distribeded transactions
USe distributed transactions
USe distribeded transactions
USe distributed transactions
wUSe distribeded Hransactions
USe distribiuded transactions
USe distributed transactions
USe distribeded transactions
USe distribuded transactions
USe distributed transactions
USe distribieded transactions
USe distribeded transactions
USe distribuded transactions
USe distribuded transactions
USe distribeded ransactions
USe distribuded transactions
USe distributed transactions
USe distribeded transactions
USe distribuded transactions
USe distribeded transactions
USe distribuded transactions
USe distributed transactions

wSe distributed transactions

62362//7
dgd/‘n
dgd/‘n
dﬂa/n
dgd/‘n
62362//7
dﬂd/n
dgd/‘n
dga/n
dgd/‘n
62362//7
dga/‘n
dja/‘n
62362//7
dga/‘n
62362//7
dﬂd/‘n
62362//7
62362/‘/7
dﬁa/‘n
62362//7
dga/‘n
dgd/‘n
62362//7
aga/n
62362/‘/7
dgd/‘n

di/‘h

lessSons

Learned

Zhroag/'z o



Z coil/ never
Z woill never
Z eoill never
Z coill never
ZL coill never

L coil! never

wuse distributed transactions
wUSe distributed transactions
use distributed ¢ransactions
USe distributed transactions
wUSe distributed transactions

wse distributed transactions

62362//7
dga/‘n
aga/n
62362//7

aga/n

dga/n

Z woill never wse distribwuted transactions agah

L woill! never wse distribited transactions agd/n

T woil! never wse distribeded ¢ransactions 62362/‘/7

L woil! never wse distribuded dransactions aga/n

L il never wse distribeded transactions aga/n

Z coill never
Z i/l never
Z eoill never
Z i/l never
Z coill never
Z coil/ never
Z i/l never
Z will never
Z i/l never
Z coill never
Z will never
Z i/l never
Z eoill never
Z coil/ never
Z i/l never

I ol never

Z coill never
Z coil! never
Z i/l never
Z ceoill never
Z coil! never
Z i/l never
Z eoill never
Z i/l never
Z coill never
Z eoill never
Z i/l never

I !l never

USe distributed transactions
USe distribuded transactions
wUSe distribeded transactions
USe distributed transactions
wUSe distribeded Hransactions
USe distribeded transactions
USe distributed transactions
USe distribeded transactions
USe distributed transactions
wUSe distribeded Hransactions
USe distribiuded transactions
USe distributed transactions
USe distribeded transactions
USe distribuded transactions
USe distributed transactions
USe distribieded transactions
USe distributed transactions
USe distribuded transactions
USe distribuded transactions
USe distribeded ransactions
USe distribuded transactions
USe distributed transactions
USe distribeded transactions
USe distribuded transactions
USe distribeded transactions
USe distribuded transactions
USe distributed transactions

wSe distributed transactions

62362//7
dgd/‘n
dgd/‘n
dga/n
62362/‘17
62362//7
dgd/n
dgd/n
dgd/n
62362/‘17
62362//7
dﬁd/‘n
dgd/‘n
62362//7
dﬁd/‘n
62362//7
62362/‘17
62362//7
dgd/n
dgd/n
62362//7
dga/‘n
dgd/n
dﬂd/n
dgd/‘n
62362//7
dgd/‘n

62362//7

lessSons

Learned

Z‘/7roa3/7 o



Z coil/ never
Z woill never
Z eoill never
Z coill never
I corll never

L coil! never

L woill never
Z will never
Z woil! never
Z woill never

L coil! never

wUSe distribeded Hransactions agan
wSe distribeded Hransactions 62\962//7
wUSe distribeded ransactions 62\962//7
wUSe distribeded Hransactions aga/n
wUSe distribeded Hransactions dga/n

wUSe distributed transactions aga/n

wUSe distribeted transactions agan

USe a//‘SZ(r/‘Aafea/ Zransactions aga/n
wuse distribeted transactions 62362//7
wSe distributed transactions again

wsSe distributed transactions again

Z coill never
Z i/l never
Z will never
Z i/l never
Z coill never

I woill never

USe distributed transactions
wUSe distribeded Hransactions
USe distribeded Hransact/ons
USe distributed Hransactions
USe distributed transactions

wuse distribeted transactions

62362//7
dﬁd/‘n
dga/‘n
dgd/‘n
62362/‘17

62362//7

L woill never wse distribeted Cransactions aga/n

L il never wse distribited transactions dgd/n

L woil/ never wse distribeded transactions aga/n

I woill never wse distributed transactions dﬁd/‘n

L woill never wse distribited transactions 62362//7

lessSons

Learned

z‘/'zroaﬁ/v o

ard
[ots of



Agenda

't's All Trade-offs

Go Concurrent

Go Reactive

Go Fault-Tolerant
Go Distributed
Go Big

o= Typesafe



There is no
Free Lunch.




T7 sl



Performance
VS
Scalability

== Typesafe



Latency
VS
[ hroughput



Avallability
VS
Consistency

== Typesafe






Shared mutable state

== Typesafe



Shared mutable state

logether with threads...

o= Typesafe



Shared mutable state

logether with threads...

=== Typesafe



...leads to

Shared mutable state

logether with threads...

..code that Is totally IN

=== Typesafe

D

- ERMINISTIC



...leads to

Shared mutable state

logether with threads...

..code that Is totally IN

D

- ERMINISTIC

..and the root of all EYIII

=== Typesafe



Shared mutable state

logether with threads...

..code that Is totally IN

D

- ERMINISTIC

..and the root of all (‘IYIII

Please, avold It at all cost

=== Typesafe



Shared mutab'®"

logether:

=== Typesafe

B\

£
<

D

¥

" v
o -
-
-~
-y .
pr s
L A
> ’
- e
o ik d

-

//

in
PN
p o ¥
'~ "
.
ie 156 e
- 08 .
. ‘




[ he problem with locks

* L ocks do not compose

* [ ocks breaks encapsulation

* [aking too few locks

* [aking too many locks

* [aking the wrong locks

* [aking locks In the wrong order
* trror recovery Is hard

=== Typesafe



You deserve better tools

» Dataflow Concurrency

* Actors

* Software Iransactional Memory (STM)
* Agents

o= Typesafe



Dataflow Concurrency

e Deterministic
e Declarative

e Data-driven

* [hreads are suspended until data Is available
* Lazy & On-demand

e No aifference between:
e Concurrent code

e Sequential code
e Examples: Akka & GPars

=== Typesafe



ACtors

e Share NOTHING

*fach
e Comr

*[solated lightwelght event-based processes

actor has a mailbox (message queue)
municates through asynchronous and

NON-

blocking message passing

* Location transparent (distributable)
e txamples: Akka & Erlang

=== Typesafe



STM

See the memory as a transactional dataset

Similar to a DB: begin, commit, rollback (ACI)
Transactions are retried upon collision
Rolls back the memory on abort

Transactions can nest and compose

Use STM Instead of abusing your database
with temporary storage of “stratch™ data

Examples: Haskell, Clojure & Scala

o= Typesafe



Agents

* Reactive memory cells (STM Ref)
* Send a update function to the Agent, which
|. adds 1t to an (ordered) queue, to be
2. applied to the Agent asynchronously
* Reads are “free’’, just dereferences the Ref
» Cooperates with STM

* Examples: Clojure & Akka

o= Typesafe



f we could start all over...

== Typesafe



f we could start all over...

|. Start with a Deterministic, Declarative & Immutable core

o= Typesafe



f we could start all over...

|. Start with a Deterministic, Declarative & Immutable core

* [ogic & Functional Programming

o= Typesafe



f we could start all over...

|. Start with a Deterministic, Declarative & Immutable core
* [ogic & Functional Programming

e Dataflow

o= Typesafe



f we could start all over...

|. Start with a Deterministic, Declarative & Immutable core
* [ogic & Functional Programming

e Dataflow

2. Add Ingeterminism selectively - only where needed

o= Typesafe



f we could start all over...

|. Start with a Deterministic, Declarative & Immutable core
* [ogic & Functional Programming

e Dataflow

2. Add Ingeterminism selectively - only where needed

e Actor/Agent-based Programming

o= Typesafe



f we could start all over...

|. Start with a Deterministic, Declarative & Immutable core
* [ogic & Functional Programming

e Dataflow

2. Add Ingeterminism selectively - only where needed

e Actor/Agent-based Programming

3. Add Mutability selectively - only where needed

o= Typesafe



f we could start all over...

|. Start with a Deterministic, Declarative & Immutable core
* [ogic & Functional Programming

e Dataflow

2. Add Ingeterminism selectively - only where needed

e Actor/Agent-based Programming

3. Add Mutability selectively - only where needed
* Protected by [ransactions (STM)

o= Typesafe



f we could start all over...

|. Start with a Deterministic, Declarative & Immutable core
* [ogic & Functional Programming

e Dataflow

2. Add Ingeterminism selectively - only where needed

e Actor/Agent-based Programming

3. Add Mutability selectively - only where needed
* Protected by [ransactions (STM)

4. Finally - only If really needed

o= Typesafe



f we could start all over...

|. Start with a Deterministic, Declarative & Immutable core
* [ogic & Functional Programming
e Dataflow
2. Add Ingeterminism selectively - only where needed
e Actor/Agent-based Programming
3. Add Mutability selectively - only where needed
* Protected by [ransactions (STM)
4. Finally - only If really needed

* Add Monitors (Locks) and explicit Threads
o= Typesafe






Nlever block

..unless you really have to

Blocking kills scalability (and performance)
Never sit on resources you don't use

Use non-blocking O

3e reactive

How!

o= Typesafe



Go Async

Design for reactive event-driven systems

|. Use asynchronous message passing
2. Use lteratee-based 1O
3. Use push not pull (or poll)

* Examples:
* Akka or Erlang actors
* Play’s reactive Iteratee |O
* Node,s or JavaScript Promises
* Server-Sent bEvents or WebSockets

* Scala’s Futures library






~allure Recovery




Fallure Recovery In Java/C/C# etc.
* You are given a SINGLE thread of control




Fallure Recovery In Java/C/C# etc.
* You are given a SINGLE thread of control

* |f this thread blows up you are screwed



Fallure Recovery In Java/C/C# etc.
* You are given a SINGLE thread of control

* |f this thread blows up you are screwed

* 50 you need to do a

WIT

IN this single t

| explicit error handling

Nread



Fallure Recovery In Java/C/C# etc.
* You are given a SINGLE thread of control

* |f this thread blows up you are screwed

* 50 you need to do all explicit error handling
WITHIN this single thread

* [o make things worse - errors do not
propagate between threads so there 1s NO
WAY OF EVEN FINDING OUT that

something have falled




Fallure Recovery In Java/C/C# etc.
* You are given a SINGLE thread of control

It this thread blows up you are screwed

S0 you need to do all explicit error handling
WITHIN this single thread

o make things worse - errors do not

propaga

e betwee

WAY O

something have fa
This leads to

= BVENEE

N threads so there is NO
NDING OUT that

lea
DEFENSIVE programming with:



Fallure Recovery In Java/C/C# etc.
* You are given a SINGLE thread of control

It this thread blows up you are screwed

S0 you need to do all explicit error handling
WITHIN this single thread

o make things worse - errors do not

propagate between threads so there 1s NO
WAY OF EVEN FINDING OUT that
something have falled

This leads to DEFENSIVE programming with:
* Error handling TANGLED with business logic




Fallure Recovery In Java/C/C# etc.
* You are given a SINGLE thread of control

It this thread blows up you are screwed

S0 you need to do all explicit error handling
WITHIN this single thread

o make things worse - errors do not

propagate between threads so there 1s NO
WAY OF EVEN FINDING OUT that
something have falled

This leads to DEFENSIVE programming with:

* Error handling TANGLED with business logic
e SCAITTERED all over the code base




Fallure Recovery In |aygll( # etc.

SR N\
ri &

L
’

* You are given a SINGILEZ
e |f this thread blows

* 50 You heed ig
WITHIN t-

To m~

D with business logic

D all over the code base



Just

| et [t Crash

2\
akka



=== Typesafe

2\
akka



1 he right way

. Isolated lightweight processes

2. Supervised processes

* Each running process has a supervising process
* Errors are sent to the supervisor (asynchronously)

* Supervisor manages the fallure

e Same semantics local as remote

* For example the Actor Model solves It nicely

o= Typesafe






Performance
VS
Scalability

== Typesafe



How do | know If | have a
performance problem!?

=== Typesafe



How do | know If | have a
performance problem!?

T your system s
slow for a single user

=== Typesafe



How do | know If | have a
scalability problem?

=== Typesafe



How do | know If | have a
scalability problem?

[T your system Is
fast for a single user
but slow under heavy load

=== Typesafe



(Three) Misconce

btions about

Reliable Distributed Computing
- Werner Vogels

|. Transparency Is the ultimate goal

2. Automatic object replication Is desirable

3. All replicas are equal and deterministic

Classic paper: A Note On Distributed Computing - VWaldo et. al.

o= Typesafe



~allacy |

Transparent Distributed Computing

* Emulating Consistency and Shared
Memory In a distributed environment

* Distributed Objects

o “Sucks like an inverted hurricane” - Martin Fowler

e Distributed lransactions

¢ ..don't get me started...

o= Typesafe



Fallacy 2
RPC

mulating synchronous blocking method
dispatch - across the network

* |gnores:

* Latency
o Partial fallures

» (General scalability concerns, caching etc.

e “Convenience over Correctness” - Steve Vinoski



INnstead

=== Typesafe



INnstead

EFmbrace the Network

R\
Use &
Asynchronous &
Message 30

Passing




Guaranteed Delivery

Delivery Semantics

* No guarantees
e At most once
e At |least once

* Once and only once

o= Typesafe



t's all lies.



t's all lies.




The network i1s inherently unreliable
and there Is no such thing as 100%
ouaranteed delivery

t's all lies.




Guaranteed Delivery

o= Typesafe



Guaranteed Delivery

he question Is what to guarantee

o= Typesafe



Guaranteed Delivery

he question Is what to guarantee

|. The message Is - sent out on the network?

o= Typesafe



Guaranteed Delivery

he question Is what to guarantee
|. The message Is - sent out on the network?

2. The message Is - received by the receiver host's NIC?

o= Typesafe



Guaranteed Delivery

he question Is what to guarantee
|. The message Is - sent out on the network?

2. The message Is - received by the receiver host's NIC?

3. The message Is - put on the receiver's queue’

o= Typesafe



Guaranteed Delivery

he question Is what to guarantee
|. The message Is - sent out on the network?

2. The message Is - received by the receiver host's NIC?

3. The message Is - put on the receiver's queue’

4. The message Is - applied to the receiver?

o= Typesafe



Guaranteed Delivery

he question Is what to guarantee
|. The message Is - sent out on the network?

2. The message Is - received by the receiver host's NIC/

3. The message Is - put on the receiver's queue’
4. The message Is - applied to the receiver?

5. The message Is - starting to be processed by the receiver?

o= Typesafe



Guaranteed Delivery

he question Is what to guarantee
|. The message Is - sent out on the network?

2. The message Is - received by the receiver host's NIC/

3. The message Is - put on the receiver's queue’
4. The message Is - applied to the receiver?
5. The message Is - starting to be processed by the receiver?

6. The message Is - has completed processing by the receiver?

o= Typesafe



Ok, then what to do?

|. Start with O guarantees (O additional cost)

2. Add the guarantees you need - one by one

o= Typesafe



Ok, then what to do?

|. Start with O guarantees (O additional cost)

2. Add the guarantees you need - one by one

Different US

= Different GUARANTEES
Different COSTS

—

—-CAS

=S

=== Typesafe



Ok, then what to do?

|. Start with O guarantees (O additional cost)

2. Add the guarantees you need - one by one

Different US

= Different GUARANTEES
Different COSTS

—

—-CAS

=S

For each addrtional guarantee you add you will erther:

* decrease performance, throughput or scalability

* Increase latency

=== Typesafe



Just



Just

Use ACKIng



Just

Use ACKIng

and be done with It

=== Typesafe



Latency
VS
[ hroughput



You should strive for

maximal throughput
with
acceptable latency

=== Typesafe









Blg Data

Imperative OO programming doesn't cut it
* Object-Mathematics Impedance Mismatch
* We need functional processing, transformations etc.

* Examples: Spark, Crunch/Scrunch, Cascading, Cascalog,
Scalding, Scala Parallel Collections

* Hadoop have been called the:
» "Assembly language of MapReduce programming”

* "EJB of our time”
=== Typesafe



Blg Data

Batch processing doesn't cut it
* Ala Hadoop
* We need redl-time data processing

* Examples: Spark, Storm, 54 etc.

* Watch"Why Big Data Needs o Be Functional”
by Dean Wampler

=== Typesafe






VWhen Is
a RDBMS

NOT

coo0d enough!

=== Typesafe



Scaling Freads
to0 a RDBMS

s hard

=== Typesafe



Scaling WITLES
to a RDBMS

s Impossible

== Typesafe



Do we

really need
a RDBMS!?



Do we

really need
a RDBMS!?

Sometimes...



Do we

really need
a RDBMS!?



Do we

really need
a RDBMS!?

But many times we don't

=== Typesafe



_Atomic
_Consistent

_ [solated

_Durab\e

=== Typesafe



Avallability
VS
Consistency

== Typesafe



Brewer's

theorem

=== Typesafe



You can only pick 2

D Consistency
[J Availability

D Partition tolerance

At a given point In time

== Typesafe



Centralized system

* |In a centralized system (RDBMS etc.)

we don't have network partrtions,
e.g. P in CAP

* 50 you get both:

Consistency

Availability

=== Typesafe




Distributed system

* |n a distributed (scalable) system

we will have network partitions,
e.g P in CAP

* 50 you get to only pick one:

D Consistency
D Availability

=== Typesafe




_BasicaHy Available

_Soft state

_ Eventually consistent

=== Typesafe



[ hink about your data

Ihen think again

* When do you need ACID!?

* When Is Eventual Consistency a better fit!

e Different kinds of data has different needs

* You need full consistency less than you think

== Typesafe



How fast Is fast enough!

Never guess: Measure, measure and measure

Start by defining a baseline

e \Where are we now!

Define what is “good enough™ - 1.e. SLAS
* Where do we want to go!

e \When are we done!

Beware of micro-benchmarks

=== Typesafe



..o, when can we go for a beer?

Never guess: Measure, measure and measure

Start by defining a baseline

e \Where are we now!

Define what is “good enough™ - 1.e. SLAS
* Where do we want to go!

e \When are we done!

Beware of micro-benchmarks

=== Typesafe









. noww hore and betld vourse/f



1 hank You

—mall:  jonas@typesafe.com
Web:  typesafe.com
Twitter: @)boner

o= Typesafe


mailto:jonas@typesafe.com
mailto:jonas@typesafe.com

