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Heinz Kabutz

 Brief Biography
– German from Cape Town, now lives in Chania

– PhD Computer Science from University of Cape Town

– The Java Specialists' Newsletter

– Java programmer

– Java Champion since 2005

 Advanced Java Courses
– Concurrency Specialist Course

• Offered in Stockholm 19-22 March 2013

– Java Specialist Master Course

– Design Patterns Course

– http://www.javaspecialists.eu
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1: Introduction
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Structure Of Hands-On Lab

 Three short lectures, each followed by a short lab
– http://www.javaspecialists.eu/outgoing/jfokus2013.zip

 We only have three hours to cover a lot, so let's go!
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Questions

 Please please please please ask questions!

 Interrupt us at any time
– This lab is on deadlocks, we need to keep focused in available time

 The only stupid questions are those you do not ask
– Once you’ve asked them, they are not stupid anymore

 The more you ask, the more we all learn
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JFokus 2013 - Finding And 
Solving Java Deadlocks

Avoiding Liveness Hazards
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10: Avoiding Liveness Hazards

 Fixing safety problems can cause liveness problems
– Don't indiscriminately sprinkle "synchronized" into your code

 Liveness hazards can happen through
– Lock-ordering deadlocks

• Typically when you lock two locks in different orders
• Requires global analysis to make sure your order is consistent

– Lesson: only ever hold a single lock per thread!

– Resource deadlocks
• This can happen with bounded queues or similar mechanisms meant to 

bound resource consumption

 A thread deadlocked in BLOCKED state can never recover
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Lab 1: Deadlock Resolution 
By Global Ordering

Avoiding Liveness Hazards
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Lab 1: Deadlock Resolution By Global Ordering

 Classic problem is that of the "dining philosophers"
– We changed that to the "drinking philosophers"

• That is where the word "symposium" comes from
– sym - together, such as "symphony"
– poto - drink

• Ancient Greek philosophers used to get together to drink & think

 In our example, a philosopher needs two glasses to drink
– First he takes the right one, then the left one

– When he finishes drinking, he returns them and carries on thinking
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Table Is Ready, All Philosophers Are Thinking
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Philosophers 5 Wants To Drink, Takes Right Cup
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Philosopher 5 Is Now Drinking With Both Cups
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Philosophers 3 Wants To Drink, Takes Right Cup
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Philosopher 3 Is Now Drinking With Both Cups
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Philosophers 2 Wants To Drink, Takes Right Cup

But he has to wait for
Philosopher 3 to 
finish his
drinking
session
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Philosopher 3 Finished Drinking, Returns Right 
Cup
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Philosopher 2 Is Now Drinking With Both Cups
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Philosopher 3 Returns Left Cup
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Drinking Philosophers In Limbo

 The standard rule is that every philosopher first picks up the 
right cup, then the left
– If all of the philosophers want to drink and they all pick up the right cup, 

then they all are holding one cup but cannot get the left cup

23
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A Deadlock Can Easily Happen With This Design
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Philosopher 5 Wants To Drink, Takes Right Cup
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Philosopher 1 Wants To Drink, Takes Right Cup
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Philosopher 2 Wants To Drink, Takes Right Cup
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Philosopher 3 Wants To Drink, Takes Right Cup
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Philosopher 4 Wants To Drink, Takes Right Cup
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Deadlock!

 All the philosophers are
waiting for their left
cups, but they will
never become
available
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Resolving Deadlocks

Deadlocks can be discovered automatically by searching 
the graph of call stacks, looking for circular dependencies
– ThreadMXBean can find deadlocks for us, but cannot fix them

 In databases, the deadlock is resolved by one of the 
queries being aborted with an exception
– The query could then be retried

 Java does not have this functionality
– When we get a deadlock, there is no clean way to recover from it

– Prevention is better than the cure

31
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Global Order With Boozing Philosophers

 If all philosophers hold one cup, we deadlock
– Our solution must prevent all philosophers from holding one cup

 We can solve the deadlock with the "dining philosophers" by 
requiring that locks are always acquired in a set order
– For example, we can make a rule that philosophers always first take the 

cup with the largest number
• If it is not available, we block until it becomes available

– And return the cup with the lowest number first
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Global Lock Ordering

 We start with all the
philosophers thinking
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Philosopher 5 Takes Cup 5

 Cup 5 has higher number
– Remember our rule!
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Philosopher 1 Takes Cup 2

 Must take the cup with
the higher number
first
– In this case

cup 2
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Philosopher 2 Takes Cup 3
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Philosopher 3 Takes Cup 4

 Note that philosopher 4
is prevented from 
holding one cup
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Philosopher 1 Takes Cup 1 - Drinking
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Philosopher 1 Returns Cup 1

 Cups are returned in the
opposite order to what
they are acquired
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Philosopher 5 Takes Cup 1 - Drinking
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Philosopher 5 Returns Cup 1
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Philosopher 1 Returns Cup 2
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Philosopher 2 Takes Cup 2 - Drinking
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Philosopher 5 Returns Cup 5
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Philosopher 4 Takes Cup 5
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Philosopher 2 Returns Cup 2
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Philosopher 2 Returns Cup 3
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Philosopher 3 Takes Cup 3 - Drinking

48

1

25

4 34

3

2

5

1



JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Returns Cup 3
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Philosopher 3 Returns Cup 4
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Philosopher 4 Takes Cup 4 - Drinking
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Philosopher 4 Returns Cup 4
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Philosopher 4 Returns Cup 5

 Deadlock free!

53

1

25

4 3
4

3

2

5

1



JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Deadlock Is Avoided

 Impossible for all philosophers to hold one cup

54
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Dynamic Lock Order Deadlocks

Often, it is not obvious what the lock instances are, e.g.

55

public boolean transferMoney(
    Account from, Account to,
    DollarAmount amount) {
  synchronized (from) {
    synchronized (to) {
      return doActualTransfer(from, to, amount);
    }
  }
}

10.1 D
eadlock
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Causing The Deadlock With Transferring Money

Giorgos has accounts in Switzerland and in Greece
– He keeps on transferring money between them

• Whenever new taxes are announced, he brings money into Greece
• Whenever he gets any money paid, he transfers it to Switzerland
• Sometimes these transfers can coincide

 Thread 1 is moving money from UBS to Alpha Bank

 Thread 2 is moving money from Alpha Bank to UBS

 If this happens at the same time, it can deadlock

56

transferMoney(ubs, alpha, new DollarAmount(1000));

transferMoney(alpha, ubs, new DollarAmount(2000));

10.1 D
eadlock
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Fixing Dynamic Lock-Ordering Deadlocks

 The locks for transferMoney() are outside our control
– They could be sent to us in any order

We can induce an ordering on the locks
– For example, we can use System.identityHashCode() to get a number 

representing this object
• Since this is a 32-bit int, it is technically possible that two different 

objects have exactly the same identity hash code
• In that case, we have a static lock to avoid a deadlock

57
10.1 D

eadlock



Concurrency Specialist Course v1.1

public boolean transferMoney(Account from, Account to,
                             DollarAmount amount) {
  int fromHash = System.identityHashCode(from);
  int toHash = System.identityHashCode(to);
  if (fromHash < toHash) {
    synchronized (from) {
      synchronized (to) {
        return doActualTransfer(from, to, amount);
      }
    }
  } else if (fromHash > toHash) {
    synchronized (to) {
      synchronized (from) {
        return doActualTransfer(from, to, amount);
      }
    }
  } else {
    synchronized (tieLock) {
      synchronized (from) {
        synchronized (to) {
          return doActualTransfer(from, to, amount);
        }
      }
    }
  }
}

58
10.1 D
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Imposing Natural Order

 Instead of System.identityHashCode(), we define an order
– Such as account number, employee number, etc.

– Or an order defined for the locks used

59

public class MonitorLock implements Comparable<MonitorLock> {
  private static AtomicLong nextLockNumber = new AtomicLong();
  private final long lockNumber = nextLockNumber.getAndIncrement();
  public int compareTo(MonitorLock o) {
    if (lockNumber < o.lockNumber) return -1;
    if (lockNumber > o.lockNumber) return 1;
    return 0;
  }
  public static MonitorLock[] makeGlobalLockOrder(
      MonitorLock... locks) {
    MonitorLock[] result = locks.clone();
    Arrays.sort(result);
    return result;
  }
}

10.1 D
eadlock
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How To Find The Deadlocks

Deadlocks are almost always revealed in the thread dump

 They are not always shown as lock ordering deadlocks

Often the deadlocks require some detective work

60
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Capturing A Stack Trace

 JVisualVM is a tool for monitoring what the JVM is doing
– Found in the JDK/bin directory

– Double-click on application
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Click On "Threads" Tab

 Click on "Thread Dump" button

62
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Stack Trace Shows What Threads Are Doing
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It Can Even Detect A Java-level Deadlock
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Lab 1 Exercise

Deadlock resolution by global ordering

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
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Lab1

 Run SymposiumTest class to trigger deadlock
– You might need a few runs

 Define a global ordering for the locks that would prevent 
deadlock
– We are synchronizing on the Krasi objects

– Define a global ordering for Krasi objects by implementing Comparable 
and providing a unique number to sort on (Krasi.java)

– Change the code to use the global ordering (Thinker.java)

– Verify that the deadlock has now disappeared

 http://www.javaspecialists.eu/outgoing/jfokus2013.zip

66
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Lab1 Exercise Solution Explanation

 Goal: Prevent all philosophers from holding a single cup

67
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Lab1 Exercise Solution Explanation

 Goal: Prevent all philosophers from holding a single cup

 The set of first cups is 2,3,4,5
– This means that at most four philosophers can hold a single cup!

68

Thinker Cup 1
right

Cup 2
left

1 1 2

2 2 3

3 3 4

4 4 5

5 5 1

Thinker Cup 1
big

Cup 2
small

1 2 1

2 3 2

3 4 3

4 5 4

5 5 1
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Lab 2: Deadlock Resolution 
By TryLock

Avoiding Liveness Hazards

69
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Lab 2: Deadlock Resolution By TryLock

 Same problem as in Lab 1

 But our solution will be different

 Instead of a global order on the locks
– We lock the first lock

– We then try to lock the second lock
• If we can lock it, we start drinking
• If we cannot, we back out completely and try again

– What about starvation or livelock?
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Lock And ReentrantLock

 The Lock interface offers different ways of locking: 
– Unconditional, polled, timed and interruptible

 Lock implementations must have same memory-visibility 
semantics as intrinsic locks (synchronized)

71

public interface Lock {
  void lock();
  void lockInterruptibly() throws InterruptedException;
  boolean tryLock();
  boolean tryLock(long timeout, TimeUnit unit)
    throws InterruptedException;
  void unlock();
  Condition newCondition();
}
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ReentrantLock Implementation

 Like synchronized, it offers reentrant locking semantics

 Also, we can interrupt threads that are waiting for locks
– Actually, the ReentrantLock never causes the thread to be BLOCKED, but 

always WAITING

– If we try to acquire a lock unconditionally, interrupting the thread will 
simply go back into the WAITING state

• Once the lock has been granted, the thread interrupts itself

72
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Using The Explicit Lock

 We have to call unlock() in a finally block
– Every time, without exception

– There are FindBugs detectors that will look for forgotten "unlocks"

73

private final Lock lock = new ReentrantLock();
public void update() {
  lock.lock(); // this should be before try
  try {
    // update object state
    // catch exceptions and restore 
    // invariants if necessary
  } finally {
    lock.unlock();
  }
}
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Synchronized Vs 
ReentrantLock

Explicit Locks

74
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Synchronized vs ReentrantLock

ReentrantLock and intrinsic locks have the same memory 
semantics

Reentrant locks can have polled locks, timed waits, 
interruptible waits and fairness
– Performance of contended ReentrantLock was much better in Java 5

However, intrinsic locks have significant advantages
– Very few programmers structure the try-finally block correctly:

75

lock.lock();
try {
  // do operation
} finally {
  lock.unlock();
}

13.4: Synchronized Vs R
eentrantLock

synchronized(this)
  // do operation
}
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Bad Try-Finally Blocks

Either no try-finally at all

Or the lock is locked inside the try block 

Or the unlock() call is forgotten in some places altogether!

76

lock.lock();
// do operation
lock.unlock();

try {
  lock.lock();
  // do operation
} finally {
  lock.unlock();
}

lock.lock();
// do operation

13.4: Synchronized Vs R
eentrantLock
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When To Use ReentrantLock

Use it when you need
– lock.tryLock()

– lock.tryLock(timeout)

– lock.lockInterruptibly()

– fair locks

– Multiple condition variables for one lock

Otherwise, prefer synchronized

77
13.4: Synchronized Vs R

eentrantLock
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Deadlock Monitoring

 Java 5 deadlock detection only works with synchronized

 In Java 6, it works with Lock and synchronized
– However, timed locks can be incorrectly detected as deadlocked

78
13.4: Synchronized Vs R

eentrantLock
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Polled Lock Acquisition

 Instead of unconditional lock, we can tryLock()

79

if (lock.tryLock()) {
  try {
    balance = balance + amount;
  } finally {
    lock.unlock();
  }
} else {
  // alternative path
}



JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Using Try-Lock To Avoid Deadlocks

 Deadlocks happen when we lock multiple locks in different 
orders

 We can avoid this by using tryLock()
– If we do not get lock, sleep for a random time and then try again

– Must release all held locks, or our deadlocks become livelocks

 This is possible with synchronized, see my newsletter
– http://www.javaspecialists.eu/archive/Issue194.html
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public void drink() {
  while (true) {
    right.lock();
    try {
      if (left.tryLock()) {
        try {
          // now we can finally drink and then return
        } finally {
          left.unlock();
        }
      }
    } finally {
      right.unlock();
    }
    // sleep for a random time
  }
}
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Using TryLock() To Avoid Deadlocks
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Deadlock Is Prevented In This Design
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Philosopher 5 Wants To Drink, Takes Right Cup
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Philosopher 1 Wants To Drink, Takes Right Cup
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Philosopher 2 Wants To Drink, Takes Right Cup
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Philosopher 3 Wants To Drink, Takes Right Cup
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Philosopher 4 Wants To Drink, Takes Right Cup
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Philosopher 4 Tries To Lock Left, Not Available
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Philosopher 4 Unlocks Right Again

 Now Philosopher 3 can
drink
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Lab 2 Exercise

Deadlock resolution by tryLock
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Lab2

 Run SymposiumTest class to trigger deadlock
– You might need a few runs

 Use Lock.tryLock() to avoid blocking on the inner lock
– lock the right

– tryLock the left
• if success, then drink and unlock both
• otherwise, unlock right and retry

– Change the Thinker.java file

– Verify that the deadlock has now disappeared

 http://www.javaspecialists.eu/outgoing/jfokus2013.zip
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Lab2 Solution Explanation

 Goal: Prevent all philosophers from forever blocking on the 
second cup
– A philosopher should not die of thirst

• We need to avoid livelocks
• lock/tryLock vs. tryLock/tryLock
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Lab 3: Resource Deadlock

Avoiding Liveness Hazards
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Lab 3: Resource Deadlock

 Problem: threads are blocked waiting for a finite resource 
that never becomes available

 Examples:
– Resources not being released after use

• Running out of threads 
• Java Semaphores not being released

– JDBC transactions getting stuck

– Bounded queues or thread pools getting jammed up

 Challenge:
– Does not show up as a Java thread deadlock

– Problem thread could be in any state: RUNNING, WAITING, BLOCKED
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How To Solve Resource Deadlocks

 Approach: If you can reproduce the resource deadlock
– Take a thread snapshot shortly before the deadlock

– Take another snapshot after the deadlock

– Compare the two snapshots

 Approach: If you are already deadlocked
– Take a few thread snapshots and look for threads that do not move

 It is useful to identify the resource that is being exhausted
–  A good trick is via phantom references (beyond scope of this lab)
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Resource Deadlocks

 We can also cause deadlocks waiting for resources

 For example, say you have two DB connection pools
– Some tasks might require connections to both databases

– Thus thread A might hold semaphore for D1 and wait for D2, whereas 
thread B might hold semaphore for D2 and be waiting for D1

 Thread dump and ThreadMXBean does not show this as a 
deadlock!
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Our DatabasePool - Connect() And Disconnect()

public class DatabasePool {
  private final Semaphore connections;
  public DatabasePool(int connections) {
    this.connections = new Semaphore(connections);
  }

  public void connect() {
    connections.acquireUninterruptibly();
    System.out.println("DatabasePool.connect");
  }

  public void disconnect() {
    System.out.println("DatabasePool.disconnect");
    connections.release();
  }
}
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ThreadMXBean Does Not Detect This Deadlock

DatabasePool.connect
DatabasePool.connect
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Stack Trace Gives A Vector Into The Code

public class DatabasePool {
  // ...
  
  public void connect() {
    connections.acquireUninterruptibly(); // line 12
    System.out.println("DatabasePool.connect");
  }
}
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Lab 3 Exercise

Resource Deadlock
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Lab3 Exercise Lab3/readme.txt

 Start our modified Java2Demo
– Connect JVisualVM

and dump all threads

– Use Java2Demo for a while
until it deadlocks

– Get another thread dump and 
compare to the first one

• This should show you where
the problem is inside your code

– Fix the problem and verify that it has been solved
• Hint: Your colleagues probably write code like this, but you shouldn't
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Lab3 Exercise Solution Explanation

 Goal: Ensure that resources are released after use

 Diff between the two thread dumps using jps and jstack

– Most likely the fault will be in one of our classes, rather than the JDK

102

< at java.util.concurrent.locks.AbstractQueuedSynchronizer
$ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
< at java.awt.EventQueue.getNextEvent(EventQueue.java:531)
< at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:213)
---
> at 
java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:
834)
> at 
java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer
.java:994)
> at 
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.ja
va:1303)
> at java.util.concurrent.Semaphore.acquire(Semaphore.java:317)
> at 
eu.javaspecialists.deadlock.lab3.java2d.MemoryManager.gc(MemoryManager.j
ava:56)
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryMonitor$Surface.paint(MemoryMonitor.java:153)
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What Is Wrong With This Code?
/**
 * Only allow a maximum of 30 threads to call System.gc() at a time.
 */
public class MemoryManager extends Semaphore {
  private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

  public MemoryManager() {
    super(MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS);
  }

  public void gc() {
    try {
      acquire();
      try {
        System.gc();
      } finally {
        System.out.println("System.gc() called");
        release();
      }
    } catch (Exception ex) {
      // ignore the InterruptedException
    }
  }
}
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Calling System.gc() is baddd (but not the problem)

Empty catch block hides problem
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Lab 4: Unsolvable Deadlocks

Avoiding Liveness Hazards
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Lab 4: Unsolvable Deadlocks

 Problem: Sometimes, things go wrong in your application 
that you cannot explain

 Challenge: You need to see if you can get the application to 
stop and then use the thread dumps to solve the problem
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Lab 4 Exercise

Resource Deadlock
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Lab4

 You are on your own
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Wrap Up

Avoiding Liveness Hazards
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Conclusion On Deadlocks

 Concurrency is difficult, but there are tools and techniques 
that we can use to solve problems

 These are just a few that we use

 For more information, have a look at 
– The Java Specialists' Newsletter - http://www.javaspecialists.eu

 We have helped a lot of companies by training their Java 
programmers
– Java Concurrency

– Java Performance Tuning

– Java Design Patterns

– Advanced Java Techniques (Java NIO, threading, data structs, etc.
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And One More Thing

 We have prepared a fourth lab for you to do at home
– Either take it along with a memory stick or get it from

– http://www.javaspecialists.eu/outgoing/jfokus2013.zip

– Send questions and comments to heinz@javaspecialists.eu
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Questions?

heinz@javaspecialists.eu
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