-_th;

Dr Heinz Kabutz

® oo

| lfrdmg And
g Java Deadlocks

ialists.eu

aining

pansasay sybny 11y ‘Zingey) zulsH €£10Z-Z10Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

cialists.eu

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Heinz Kabutz

® Brief Biography

— German from Cape Town, now lives in Chania

— PhD Computer Science from University of Cape Town

— The Java Specialists' Newsletter
— Java programmer FoN

— Java Champion since 2005

® Advanced Java Courses —

(
= Java

Champions

— Concurrency Specialist Course L —
e Offered in Stockholm 19-22 March 2013

— Java Specialist Master Course
— Design Patterns Course

— http://lwww.javaspecialists.eu

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

s AL <
‘e .s.,w.n.-. :

ARSI N LR A A
LR AR S & TR

\."

HT: Poa: TR € i RN S i O X TRt O AT T e ok
RORBRNGAN 5 0 SURIDRNRY 61607+ VTR CUiRnP ¢ o 0 IR GRARE AR OR TR B YL i T] R
.-',Mﬂ«'%*@ B s e A1 fuaet T T e e]
R TEE TeANKE R SRR RRRE R C T _ S : eammmmhw%:nv e HJ
TS SAH) 35 &R SgaReE LYy CLEREL ,J;- ‘ gat i ’&ll
.--le $~'fffi." S 1R A A : 335!'5'.' lTE‘ﬁb 4 A 3 IJI
ln!!ﬂ
'&:L

UL RS ARER ST ARENTL ivfshﬁﬂﬂﬁﬂiliﬂllllll
(R NRANEGRREARELNY § §’>33
..... -A?j :':f ;;“ ; o .‘ [Lt n!;>!\l : . | f; : '!g"

'\l

.o e .
\er\% ~ 'é it

e
i‘m e

- ‘\V . ‘. : S J'

. -
J ..*‘h:“' WK S AT ,“._.r,_.
.5 > . i Y . Y L) -
\ Yl) ". 2 l” ‘.‘ ‘N _‘1\"»’,.“.'.‘(0
IR \ - TN '. \
TR PRGN
e g %ﬁ,’a"* AN ‘\' e, AN R «
LD 5 A g X
\Q't. ,:\ P e ,..’) : 3 :
S S T IRRET S AN A
. ot LN Y
4 ; :

S LSRR NG
;?%f"%fi%w‘"
;-‘_;4‘, ' A
o iy SR
-cﬂ&*%!‘#ﬁﬁr'ug“

\ S %) v

-a)

"\... A t.,\ " ;4 "" \.‘*’.“‘: \
A1) ql:",\ "-: Y RN 5
SR 3, A+
?%JWI

4 B

.Javqgggglgrl‘llg‘tg.eu

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks

Structure Of Hands-On Lab

® Three short lectures, each followed by a short lab

— http://lwww.javaspecialists.eu/outgoing/jfokus2013.zip

® We only have three hours to cover a lot, so let's go!

Javaspecialists.eu
pansasay sIyBIY 11y “ZIngey| ZuIeH £10Z-ZL0Z O

cialists.eu

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Questions

® Please please please please ask questions!

® Interrupt us at any time

— This lab is on deadlocks, we need to keep focused in available time

® The only stupid questions are those you do not ask

— Once you’ve asked them, they are not stupid anymore

® The more you ask, the more we all learn

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

Avoiding Liveness Hazards

.-/_ -

10

_ ‘g_ , lfrdmg And
CREVE] Deadlocks

4 ‘ o

pansasay sybny 11y ‘Zingey) zulsH €£10Z-Z10Z @

.Javqggeglg}\ r‘ts eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks

10: Avoiding Liveness Hazards

® Fixing safety problems can cause liveness problems

— Don't indiscriminately sprinkle "synchronized" into your code

3. ® Liveness hazards can happen through
'5 — Lock-ordering deadlocks

e Typically when you lock two locks in different orders
* Requires global analysis to make sure your order is consistent

— Lesson: only ever hold a single lock per thread!

Javasg

— Resource deadlocks

* This can happen with bounded queues or similar mechanisms meant to
bound resource consumption

pansasay sybny 11y ‘Zingey) zuieH €10Z-Z1L0Z O

® A thread deadlocked in BLOCKED state can never recover

Avoiding Liveness Hazards

-)
-
~ -
P

12

) «Kesclutlon
5lol aI Ordermg

pansasay sybny 11y ‘Zingey) zulsH €£10Z-Z10Z @

.Javqggeglg}\ r‘ts eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

.} mo.u

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Lab 1: Deadlock Resolution By Global Ordering

® Classic problem is that of the "dining philosophers™

— We changed that to the "drinking philosophers™
 That is where the word "symposium" comes from
—sym - together, such as "symphony"”
— poto - drink
 Ancient Greek philosophers used to get together to drink & think

® In our example, a philosopher needs two glasses to drink

— First he takes the right one, then the left one

— When he finishes drinking, he returns them and carries on thinking

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

Javaspecialists.eu

Concurrency Specialist Course v1.1

Table Is Ready, All Philosophers Are Thinking

O

O &)

OO

d¥oojpead L0}

Javaspecialists.eu

Concurrency Specialist Course v1.1

Philosophers 5 Wants To Drink, Takes Right Cup

O

O,

&
0
(&)

(2)

d¥oojpead L0}

Javoquclollsis.ou

Concurrency Specialist Course v1.1

Philosopher 5 Is Now Drinking With Both Cups

O

O,

O
-
O

doo|pead 101

Javaspecialists.eu

Concurrency Specialist Course v1.1

Philosophers 3 Wants To Drink, Takes Right Cup

O

O,

o
-
(&)

d¥oojpead L0}

Javoquclollsis.ou

Concurrency Specialist Course v1.1

Philosopher 3 Is Now Drinking With Both Cups

doo|pead 101

Concurrency Specialist Course v1.1

Philosophers 2 Wants To Drink, Takes Right Cup

- | ®@ But he has to wait for
Philosopher 3 to @
finish his

drinking .

session e

d¥oojpead L0)

Javaspecialists.eu

Javaspecialists.eu

Concurrency Specialist Course v1.1

Philosopher 3 Finished Drinking, Returns Right
Cup

d¥oojpead L0}

Javoquclollsis.ou

Concurrency Specialist Course v1.1

Philosopher 2 Is Now Drinking With Both Cups

doo|pead 101

Javoquclollsis.ou

Concurrency Specialist Course v1.1

Philosopher 3 Returns Left Cup

doo|pead 101

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Drinking Philosophers In Limbo

® The standard rule is that every philosopher first picks up the
right cup, then the left

— If all of the philosophers want to drink and they all pick up the right cup,
then they all are holding one cup but cannot get the left cup

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

A Deadlock Can Easily Happen With This Design

O

O
O

O,

Javaspecialists.eu
pansesay sWbry Iy ‘Zinge)] zuleH €£1.0Z-Z1L0Z ©

O

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 5 Wants To Drink, Takes Right Cup

O

O,

Javaspecialists.eu
pansasay sybiy 11y ‘Zinqge)] zuiaH £10Z-ZL0Z ®

OO

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 1 Wants To Drink, Takes Right Cup

©
O

O,

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

O

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 2 Wants To Drink, Takes Right Cup

O

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

O

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 3 Wants To Drink, Takes Right Cup

O

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 4 \Wants To Drink, Takes Right Cup

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

Javaspecialists.eu

| ® All the philosophers are
waiting for their left
cups, but they will
never become

available a

JFokus 2013 - Finding and Solving Java Deadlocks

Deadlock!

pansesay sIybI 1Y ‘Zanqgey) zuleH £1L0Z-Z1L0Z @

COncurropcy s__peclallst Course v1.1

Resolving Deadlocks

® Deadlocks can be discovered automatically by searching
the graph of call stacks, looking for circular dependencies

z — ThreadMXBean can find deadlocks for us, but cannot fix them

® In databases, the deadlock is resolved by one of the
5 queries being aborted with an exception

— The query could then be retried

| ® Java does not have this functionality
— When we get a deadlock, there is no clean way to recover from it

— Prevention is better than the cure

¥ooipead L0}

o] mo.u

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Global Order With Boozing Philosophers

® If all philosophers hold one cup, we deadlock

— Our solution must prevent all philosophers from holding one cup

® We can solve the deadlock with the "dining philosophers™ by
requiring that locks are always acquired in a set order

— For example, we can make a rule that philosophers always first take the
cup with the largest number

e If it is not available, we block until it becomes available

— And return the cup with the lowest number first

pansesay syby 11y ‘Zinge)y) zuleH £10Z-210Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Global Lock Ordering

1 ® We start with all the

philosophers thinking @

O,

JOVOQD.ClO“SfS.QU

pansesay sIybI 1Y ‘Zanqgey) zuleH £1L0Z-Z1L0Z @

OO

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 5 Takes Cup 5

| ® Cup 5 has higher number

— Remember our rule! @

Javaspecialists.eu
pansesay sWbiy Iy ‘Zinge)] zuleH €£1.0Z-Z1L0Z ©

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 1 Takes Cup 2

~ |® Must take the cup with

the higher number
first

— In this case
cup 2

&)

O

Javaspecialists.eu

pansesay sIybI 1Y ‘Zanqgey) zuleH £1L0Z-Z1L0Z @

O

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 2 Takes Cup 3

©
O

&
5
&)

Javaspecialists.eu

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 3 Takes Cup 4

| ® Note that philosopher 4
is prevented from
holding one cup

O

JOVOQD.ClO“SfS.QU

pansesay sIybI 1Y ‘Zanqgey) zuleH £1L0Z-Z1L0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 1 Takes Cup 1 - Drinking

©
O

Javaspecialists.eu

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 1 Returns Cup 1

| ® Cups are returned in the
opposite order to what
they are acquired

O

JOVOQD.ClO“SfS.QU

pansesay sIybI 1Y ‘Zanqgey) zuleH £1L0Z-Z1L0Z @

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 5 Takes Cup 1 - Drinking

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 5 Returns Cup 1

©
O

Javaspecialists.eu

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 1 Returns Cup 2

O

Javaspecialists.eu

O

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 2 Takes Cup 2 - Drinking

pansesay sWby 11 ‘Zanqe)) zuleH £10Z-Z1L0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 5 Returns Cup 5

O

O
O

Javaspecialists.eu
pansesay sWbry Iy ‘Zinge)] zuleH €£1.0Z-Z1L0Z ©

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 4 Takes Cup 5

O

O

Javaspecialists.eu
pansasay sybiy 11y ‘Zinqge)] zuiaH £10Z-ZL0Z ®

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 2 Returns Cup 2

O

O

Javaspecialists.eu
pansasay sybiy 11y ‘Zinqge)] zuiaH £10Z-ZL0Z ®

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 2 Returns Cup 3

O

O

O,

Javaspecialists.eu
pansasay sybiy 11y ‘Zinqge)] zuiaH £10Z-ZL0Z ®

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 3 Takes Cup 3 - Drinking

O

O

O,

pansesay sWby 11 ‘Zanqe)) zuleH £10Z-Z1L0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 3 Returns Cup 3

O

O

O,

Javaspecialists.eu
pansasay sybiy 11y ‘Zinqge)] zuiaH £10Z-ZL0Z ®

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 3 Returns Cup 4

O

O

O @

O,

Javaspecialists.eu
pansasay sybiy 11y ‘Zinqge)] zuiaH £10Z-ZL0Z ®

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 4 Takes Cup 4 - Drinking

O

O

O,

Javaspecialists.eu

O

pansesay sWby 11 ‘Zanqe)) zuleH £10Z-Z1L0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 4 Returns Cup 4

O

O

O

O,

Javaspecialists.eu
pansasay sybiy 11y ‘Zinqge)] zuiaH £10Z-ZL0Z ®

Javaspecialists.eu

1 ® Deadlock free!

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 4 Returns Cup 5

O

O
O

O,

pansesay sWby 11 ‘Zanqe)) zuleH £10Z-Z1L0Z @

O

Javaspecialists.eu

| ® Impossible for all philosophers to hold one cup

JFokus 2013 - Finding and Solving Java Deadlocks

Deadlock |Is Avoided

pansesay sIybI 1Y ‘Zanqgey) zuleH £1L0Z-Z1L0Z @

Jovosp‘b\clonm.ou

Concurrency Specialist Course v1.1

Dynamic Lock Order Deadlocks

® Often, it is not obvious what the lock instances are, e.g.

public boolean transferMoney(
Account from, Account to,
Dol larAmount amount) {
synchronized (from) {
synchronized (to) {
return doActualTransfer(from, to, amount):

¥
¥
¥

d¥oojpead L0}

alists.eu
.

Javasg

COncuri‘gncy Specialist Course v1.1

Causing The Deadlock With Transferring Money

® Giorgos has accounts in Switzerland and in Greece

— He keeps on transferring money between them
« Whenever new taxes are announced, he brings money into Greece
* Whenever he gets any money paid, he transfers it to Switzerland
 Sometimes these transfers can coincide

® Thread 1 is moving money from UBS to Alpha Bank
transferMoney(ubs, alpha, new DollarAmount(1000));

® Thread 2 is moving money from Alpha Bank to UBS
transferMoney(alpha, ubs, new DollarAmount(2000));

® If this happens at the same time, it can deadlock

¥ooipead L0}

Concurrency Specialist Course v1.1

Fixing Dynamic Lock-Ordering Deadlocks

® The locks for transferMoney() are outside our control

— They could be sent to us in any order

3 . . N
_| ® We can induce an ordering on the locks S
— For example, we can use System.identityHashCode() to get a number no?
; representing this object %

Q
C Since this is a 32-bit int, it is technically possible that two different Ba
g objects have exactly the same identity hash code

e I[n that case, we have a static lock to avoid a deadlock

Concurrency Specialist Course v1.1

public boolean transferMoney(Account from, Account to,
Dol larAmount amount) {
int fromHash = System.identityHashCode(from) ;
int toHash = System.identityHashCode(to);
1if (fromHash < toHash) {
synchronized (from) {
synchronized (to) {
return doActualTransfer(from, to, amount);

}
- } =
| } else if (fromHash > toHash) { 2
s synchronized (to) { =)
3 synchronized (from) { 9
S return doActualTransfer(from, to, amount); %
. &
} else {

synchronized (tielLock) {

synchronized (from) {

synchronized (to) {
return doActualTransfer(from, to, amount);

Javasg

Concurrency Specialist Course v1.1

Imposing Natural Order

® Instead of System.identityHashCode(), we define an order

— Such as account number, employee number, etc.

— Or an order defined for the locks used

public class MonitorLock implements Comparable<MonitorLock> {
private static AtomicLong nextLockNumber = new AtomicLong();
private final long lockNumber = nextLockNumber.getAndIncrement();

o] mo.u

d¥oojpead L0}

public int compareTo(MonitorLock o) {
1if (lockNumber < o.lockNumber) return -1;
2 1f (lockNumber > o.lockNumber) return 1;
return O;

}

public static MonitorLock[] makeGlobalLockOrder/(
MonitorLock... locks) {
MonitorLock[] result = locks.clone();
Arrays.sort(result);
return result;

}
}

Jovosp‘b\clonm.ou

Concurrency Specialist Course v1.1

How To Find The Deadlocks

® Deadlocks are almost always revealed in the thread dump
® They are not always shown as lock ordering deadlocks

® Often the deadlocks require some detective work

- | ® JVisualVM is a tool for monitoring what the JVM is doing

Javosb‘qclaum.ou

JFokus 2013 - Finding and Solving Java Deadlocks

Capturing A Stack Trace

— Found in the JDK/bin directory

— Double-click on application

B Java VisualVM
File Applications VYiew Tools Window Help

=5 W W

4§Applications a0 x | Start Page x

=18 Local
¥ Visualym

VisualVM Home

L < [T >

Java™ VisualVM X-!)'

Snapshots Getting Started with VisualVM Troubleshooting Guide for Java SE 6
VisualVM Troubleshooting Guide Troubleshooting Java™ 2 SE 5.0

Getting Started Extending VisualVM Monitoring and Managing Java SE 6

Java SE Reference at a Glance

ORACLE’

Show On Startup

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Click On "Threads" Tab

~ | ® Click on "Thread Dump" button

E Java VisualVM

File Applications Yiew Tools Window Help

5 =53
’ 'EAppIications Q@ x|| start Page x[é com.intellij.rt.execution. application. AppMain {pid 256) x] |II| [E]@
-
z E] FL'oEa':r - [overview | [Monitor | [Threads | @ sampler | (5) Profiler |
[‘_J isua
- & <Unknown appiic | T com.intellij.rt.execution.application.AppMain (pid 256)
o S TE—— Threads Threads visualizatiori
. 4 é org.jetbrains.ide:
0 48 Remote Live threads: 15
a &) Snapshats Daemon threads: 9 |__Thread Durp -] II >
» | Timeline | Table | Details P
g @ Q @ @ show lAII Threads VI
o Threads § I I I I I 0::30 I I I I I I I I I 0:{40 [lrr':s]l
- [IMX server connection timeout 15 I |_ * Al
O RMI Scheduler{0)

@ RMI TCP Connection(1)-192.168...
E RMI TCP Accept-0

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

O pool-1-thread-S
O pool-1-thread-4
O pool-1-thread-3

O pool-1-thread-2 M|
< :] | >

[Running [Sleeping [Wait [Monitor

L ([T >

JFokus 2013 - Finding and Solving Java Deadlocks

Stack Trace Shows What Threads Are Doing

¥H Java VisualVM
File Applications Yiew Tools Window Help

1L B 3hC

: Applications 40 x | StartPage x é com.intellij.rt.execution. application. AppMain (pid 256) x Ez] [E] @
Ej@ EE: . [overview | [Monitor | (=] Threads | G, Sampler | (5) Profiler [threaddump] 12:04:37 PM x 1
© e 4T Visua

= com.intellij.rt.execution.application.AppMain (pid 256)
| Thread Dump

- & org.jetbrains.ide:
é 2012-09-14 15:04:37
@ Remote

l
= |
- Full thread dump Java HotSpot (TM) Client VM (ZZ.0-bl0 mixed mode, sharing):
[Snapshots
"BMI TCP Comnection(Z)-19Z.1628.187.130" daemon prio=6 tid=0x0Zb4a800 nid=0xcel
jJava. lang. Thread. State: RUNNAELE

at java.net . SocketInputStrean. socketReadl (Natiwve Method)

at java.net . SocketInputStrean. read(SocketInputStrean. java: 150)

at java.net . SocketInputStrean. read(SocketInputStreamn. java:lZl)

at java.io.BufferedInputStream. fill (BufferedInputStrean. java:235)

Javaspecialists.eu

at java.io.BufferedInputStream.read(BufferedInputStrean. java:254)

- locked <0xZ5565818> (a java.io.BufferedInputStream)

at java.io.FilterInputStrean. read(FilterInputStream. java:83)

at sun.rui.transport . tep. TCPTransport _handleMessages (TCPTransport. java:
at sun.rmi.transport.tcop. TCPTransportiConnectionHandler . runl (TCPTranspo

pansasay sybiy 11y ‘2anqey zuley £102-Z10Z @

at sun.rmi.transport_tep. TCPTransportiConnectionHandler run(TCPTranspor
at java.util.concurrent. ThreadPoolExecutor. runlforker (ThreadPoolExecutor
at java.util.concurrent. ThreadPoolExecutorilWorker. runi{ThreadPoolExecuto
at java.lang. Thread. run{Thread. java: 722)

Locked ownmable synchronizers:

- <MNwZ7EEAREQ3N=> {fa Aawa nrtil carvenrrent. ThreadPanl]l Ryeratnrslilinrker) ___

< > <) = | 2

JFokus 2013 - Finding and Solving Java Deadlocks

It Can Even Detect A Java-level Deadlock

B¥ Java VisualVm
File Applications VYiew Tools Window Help

=5 B E 5

'S Applications a0 x| Start Page x é com.intellij.rt.execution. application. AppMain (pid 256) x EI] E] @
E]@ E‘:: - | Overview J| Monitor || |=| Threads || &2 Sampler “ () Profiler [threaddump] 12:04:37 PM x}

: , " isua

= com.intellij.rt.execution.application.AppMain (pid 256)
| Thread Dump

P é I;tI:Ir)ea‘ddu'r;‘lp JNI global references: 140 ~

- - &3 org.jetbrains.ides -

£ Remote

Snapshots Found one Java-lewel deadlock:

"pool-l-thread-5":
waiting for ownable synchronizer 0xZ2545Z24c0, (a java.util.concurrent.locks. Re
which is held by "pool-l-thread-1"

"pool-l-thread-1":
waiting for ownable synchronizer 0xZ545Zbcec8, (a java.util.concurrent.locks.Re
which is held by "pool-l-thread-2"

"pool-l-thread-2":
waiting for ownable synchronizer 0xZ2545Zal8, {(a java.util.concurrent.locks.Re
which is held by "pool-l-thread-3"

"pool-l-thread-3":
waiting for ownable synchronizer 0xZ5452868, (a java.util-concurrent.locks.Refé'
which is held by "pool-l-thread-4"

"pool-l-thread-4":
waiting for ownable synchronizer 0xZ2545Z26b8, (a java.util.concurrent.locks.Re
which is held by "pool-l-thread-5"

Javaspecialists.eu
pansasay siybiy 11y ‘Zingey| zuiaH £10Z-Z1L0Z @

Java stack information for the threads listed above: v |

< 1l | B

< >

65

s

B ..‘.) ' - -— - g

~ . -
// - S x ‘:- iy ‘ .r‘l
- r 3
L5 Ao
4 2 P
- _—

'*V

—

4
=

k resolution by global ordering

.Javqggggl&[@g.eu

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

"'m.“

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Lab1

® Run SymposiumTest class to trigger deadlock

— You might need a few runs

® Define a global ordering for the locks that would prevent
deadlock

— We are synchronizing on the Krasi objects

— Define a global ordering for Krasi objects by implementing Comparable
and providing a unique number to sort on (Krasi.java)

— Change the code to use the global ordering (Thinker.java)

— Verify that the deadlock has now disappeared

pansesay syby 11y ‘Zinge)y) zuleH £10Z-210Z @

® http://www.javaspecialists.eu/outgoing/jfokus2013.zip

- | ® Goal: Prevent all philosophers from holding a single cup

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Lab1 Exercise Solution Explanation

pansesay sIybI 1Y ‘Zanqgey) zuleH £1L0Z-Z1L0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Lab1 Exercise Solution Explanation

®
N

® Goal: Prevent all philosophers from holding a single cup S

s

: Thinker [Cup1 |Cup 2 Thinker |Cup 1 |Cup 2 -
) right |left big small §
s 1 1 2 1 2 |1 5
© Z
o 2 2 3 2 3 2 R
: b >
3 3 4 3 4 3 2

o Q
> =3
S 4 4 5 4 4 g
@

5 5 1 5 1 §

®

Q.

® The set of first cups is 2,3,4,5

— This means that at most four philosophers can hold a single cup!

69

«Kesclutlon
ryLock

- 2

Avoiding Liveness Hazards

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

.Javc:gee«;;r <zcl;nllsts eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks

Lab 2: Deadlock Resolution By TrylLock

® Same problem as in Lab 1
® But our solution will be different

® Instead of a global order on the locks

— We lock the first lock

— We then try to lock the second lock
* If we can lock it, we start drinking
* If we cannot, we back out completely and try again

Jovosp‘qcloum.ou

— What about starvation or livelock?

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Lock And ReentrantLock

® The Lock interface offers different ways of locking:

— Unconditional, polled, timed and interruptible

public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean trylLock();
boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException;
void unlock();
Condition newCondition();

}

® Lock implementations must have same memory-visibility
semantics as intrinsic locks (synchronized)

o] mo.u

Javasg

pansesay syby 11y ‘Zinge)y) zuleH £10Z-210Z @

cialists.eu

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

ReentrantLock Implementation

® Like synchronized, it offers reentrant locking semantics

® Also, we can interrupt threads that are waiting for locks

— Actually, the ReentrantLock never causes the thread to be BLOCKED, but
always WAITING

— If we try to acquire a lock unconditionally, interrupting the thread wili
simply go back into the WAITING state

 Once the lock has been granted, the thread interrupts itself

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

cialists.eu

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Using The Explicit Lock

® We have to call unlock() in a finally block

— Every time, without exception

— There are FindBugs detectors that will look for forgotten "unlocks™

private final Lock lock = new ReentrantLock();

public void update() {
lock.lock(); // this should be before try
try {
// update object state
// catch exceptions and restore
// 1nvariants 1f necessary
} finally {
lock.unlock();

¥
¥

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

74

r 4 C Vs
T antLock

Explicit Locks

.Javqgggglg%tg.eu

COncurropcy s__peclallst Course v1.1

Synchronized vs ReentrantLock

® ReentrantLock and intrinsic locks have the same memory
semantics

3. ® Reentrant locks can have polled locks, timed waits,
interruptible waits and fairness

: — Performance of contended ReentrantLock was much better in Java 5

o K However, intrinsic locks have significant advantages

MO0 TIURIIUSDYN SA POZIUCIYIUAS #'CL

3 — Very few programmers structure the try-finally block correctly:
lock.Tock();
try { _ _
// do operation Syj;hzgnlzzﬂgtglz)
} finally {) p
lock.unlock();

¥

Concurrency Specialist Course v1.1

Bad Try-Finally Blocks

® Either no try-finally at all
lTock.lock();

// do operation
lock.unlock();

® Or the lock is locked inside the try block

try {
lock.lock();

// do operation
} finally {

lock.unlock();
}

® Or the unlock() call is forgotten in some places altogether!

lTock.lock();
// do operation

Jovasp.\clollm.ou

OO0 TIURIUSDYN SA PIZIUCIYIUAS H'EL

Jovosp“qclallsts .eu

Concurrency Specialist Course v1.1

When To Use ReentrantLock

® Use it when you need
— lock.tryLock()
— lock.tryLock(timeout)
— lock.lockinterruptibly()
— fair locks

— Multiple condition variables for one lock

® Otherwise, prefer synchronized

M0 TIURIUDDY SA pQZ!UO.IIIOlIKS Vel

Jovosp"qclollsts.ou

Concurrency Specialist Course v1.1

Deadlock Monitoring

® Java 5 deadlock detection only works with synchronized

® In Java 6, it works with Lock and synchronized

— However, timed locks can be incorrectly detected as deadlocked

M0 TIURIUDDY SA pGZ!UO.IllOUKS Vel

JFokus 2013 - Finding and Solving Java Deadlocks

Polled Lock Acquisition

- | ® Instead of unconditional lock, we can tryLock()
if (lock.tryLock()) {

- try {

® balance = balance + amount;
s } finally {

o Tock.unTock();

O }

§ } else {

o // alternative path

S }

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

cialists.eu

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Using Try-Lock To Avoid Deadlocks

® Deadlocks happen when we lock multiple locks in different
orders

® We can avoid this by using tryLock()

— If we do not get lock, sleep for a random time and then try again

— Must release all held locks, or our deadlocks become livelocks

® This is possible with synchronized, see my newsletter

— http://lwww.javaspecialists.eu/archive/lssue194.html

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

- | public void drink() {

Javosb‘qclaum.ou

JFokus 2013 - Finding and Solving Java Deadlocks

Using TryLock() To Avoid Deadlocks

while (true) {
right. lock();

©)

N

e

O

N

L

try { =
1f (left.tryLock()) { @
try { N

// now we can finally drink and then return S

} finally { £
left.unlock(); N

} 2

} X

} finally { Py
right.unTock(); g

¥ 2
// sleep for a random time 3
} 2

JFokus 2013 - Finding and Solving Java Deadlocks

Deadlock Is Prevented In This Design

O

O
O

O,

Javaspecialists.eu

O

pansesay sWby 11 ‘Zanqe)) zuleH £10Z-Z1L0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 5 Wants To Drink, Takes Right Cup

O

O,

Javaspecialists.eu
pansasay sybiy 11y ‘Zinqge)] zuiaH £10Z-ZL0Z ®

OO

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 1 Wants To Drink, Takes Right Cup

©
O

O,

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

O

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 2 Wants To Drink, Takes Right Cup

O

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

O

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 3 Wants To Drink, Takes Right Cup

O

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 4 \Wants To Drink, Takes Right Cup

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 4 Tries To Lock Left, Not Available

pansesay syBIY 1Y ‘ZINge) ZulaH £10Z-ZL0Z @

Javaspecialists.eu

| ® Now Philosopher 3 can

JFokus 2013 - Finding and Solving Java Deadlocks

Philosopher 4 Unlocks Right Again

drink °

O

pansesay sWby 11 ‘Zanqe)) zuleH £10Z-Z1L0Z @

90

E _
" 4

B ..‘.) - -— - g

“s- - e y d
" vy
’ : ‘/
-~
s A —

- 4 -
=) :
‘ !
- ’

—

0
>
ar
" ',,c‘(’.
b .
e

“'0»,

resolution by tryLock

.Javqggggl&[@g.eu

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

cialists.eu

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Lab?2

® Run SymposiumTest class to trigger deadlock

— You might need a few runs

® Use Lock.tryLock() to avoid blocking on the inner lock

— lock the right

— tryLock the left
e if success, then drink and unlock both
e otherwise, unlock right and retry

— Change the Thinker.java file
— Verify that the deadlock has now disappeared

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

® http://www.javaspecialists.eu/outgoing/jfokus2013.zip

JFokus 2013 - Finding and Solving Java Deadlocks

Lab2 Solution Explanation

® Goal: Prevent all philosophers from forever blocking on the
second cup
— A philosopher should not die of thirst

 We need to avoid livelocks
* lock/tryLock vs. tryLock/tryLock

Javaspecialists.eu
pansasay sIyBIY 11y “ZIngey| ZuIeH £10Z-ZL0Z O

°K;

adlock

' id ng Liveness Hazards

.Jc:vc:ggeg:r 3n||sts eu

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

.} mo.u

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Lab 3: Resource Deadlock

® Problem: threads are blocked waiting for a finite resource
that never becomes available

® Examples:

— Resources not being released after use
 Running out of threads
e Java Semaphores not being released

— JDBC transactions getting stuck

— Bounded queues or thread pools getting jammed up

® Challenge:

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

— Does not show up as a Java thread deadlock
— Problem thread could be in any state: RUNNING, WAITING, BLOCKED

.} mo.u

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

How To Solve Resource Deadlocks

® Approach: If you can reproduce the resource deadlock
— Take a thread snapshot shortly before the deadlock

— Take another snapshot after the deadlock

— Compare the two snapshots

® Approach: If you are already deadlocked

— Take a few thread snapshots and look for threads that do not move

® It is useful to identify the resource that is being exhausted

— A good trick is via phantom references (beyond scope of this lab)

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

cialists.eu

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Resource Deadlocks

® We can also cause deadlocks waiting for resources

® For example, say you have two DB connection pools

— Some tasks might require connections to both databases

— Thus thread A might hold semaphore for D1 and wait for D2, whereas
thread B might hold semaphore for D2 and be waiting for D1

® Thread dump and ThreadMXBean does not show this as a
deadlock!

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Our DatabasePool - Connect() And Disconnect()

public class DatabasePool {
private final Semaphore connections;
public DatabasePool (1nt connections) {
this.connections = new Semaphore(connections);

¥

public void connect() {
connections.acquireUninterruptibly();
System.out.printin("DatabasePool.connect");

}

Jovosp‘qcloum.ou

public void disconnect() {
System.out.printlin("DatabasePool.disconnect");
connections.release();

¥
¥

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

ThreadMXBean Does Not Detect This Deadlock

1 DatabasePool.connect
DatabasePool.connect

Reference Handler Y Name: Thread-0
Finalizer State: WAITING on java.util.concurrent.Semaphore$NonfairSync@32089335
Signal Dispatcher Total blocked: 0 Total waited: 2

Monitor Ctrl-Break

Thread-0 Stack trace:

Thread-1 sun.misc.Unsafe.park(Native Method)

java.util.concurrent.locks.LockSupport.park(LockSupport.java:186)
" java.util.concurrent.locks.AbstractQueuedSynchronizer.park AndCheckInterrupt(AbstractQueuedSynchronizer.java:834)
RMI TCP Accept-0 java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireShared(AbstractQueuedSynchronizer.java:964)
RMI Scheduler(0) java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireShared(AbstractQueuedSynchronizer.java:1282)

L java.util.concurrent.Semaphore.acquireUninterruptibly(Semaphore.java:340)

JMX server conne.ctlon tmeout . eu.javaspecialists.course.concurrency.ch10_avoiding_liveness_hazards.DatabasePool.connect(DatabasePool.java:12)
RMI TCP Connection(2)-192.16 . eu.javaspecialists.course.concurrency.ch10_avoiding_liveness_hazards.DatabasePoolTest$ 1.run(DatabasePoolTest.java:12)

=)

Filter (Detect Deadlock) No deadlock detected

Detect Deadlock No deadlock detected

DestroyJavaVM
Attach Listener

Javaspecialists.eu

pansesay sIybI 1Y ‘Zanqgey) zuleH £1L0Z-Z1L0Z @

JFokus 2013 - Finding and Solving Java Deadlocks

Stack Trace Gives A Vector Into The Code

/
locks.AbstractQueuedSynchronizer.doAcquireShared(AbstractQueuedSynchronizer.java:964)
locks.AbstractQueuedSynchronizer.acquireShared(AbstractQueuedSynchronizer.java:1282)
Semaphore.acquireUninterruptibly(Semaphore.java:340)
g ourse.concurrency.ch1l0_avoiding_liveness_hazards.DatabasePool.cgnnect(DatabasePool.java:12)
» .
| public class DatabasePool {
N // ...
QO
§ public void connect() {
= connections.acquireUnint#rruptiblyQ; // line 12
S System.out.printlin("DatabasePool.connect");

¥
¥

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

100

"..) \ J \

1 - - >~
| .y S . - _ ""’
> B o
-/ "
. T
4 P
- L -
&,, v o
- ' a
e -~
4) -

——

‘
2

— Resource Deadlock

.Javqgggglgrl‘llg‘tg.eu

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks

Lab3 Exercise Lab3/readme.txt

® Start our modified Java2zDemo

Java

the problem is inside your code

— Fix the problem and verify that it has been solved

©

N

S

N

— Connect JVisualVM g

5 and dump all threads -
; — Use Java2Demo for a while N
= until it deadlocks &
S

% — Get another thread dump and N
. compare to the first one E

e This should show you where “%

2

@0

®

<

@

Q.

* Hint: Your colleagues probably write code like this, but you shouldn't

alists.eu
.

Javasg

JFokus 2013 - :Hndlng g_hd Solving Java Deadlocks

Lab3 Exercise Solution Explanation

® Goal: Ensure that resources are released after use

® Diff between the two thread dumps using jps and jstack

< at java.util.concurrent.locks.AbstractQueuedSynchronizer
$ConditionObject.await(AbstractQueuedSynchronizer.java:2043)

< at java.awt.EventQueue.getNextEvent(EventQueue.java:531)

< at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:213)

> at
java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckinterrupt(AbstractQueuedSynchronizer.java:
834)

> at
java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedinterruptibly(AbstractQueuedSynchronizer
Java:994)

>at — Most likely the fault will be in one of our classes, rather than the JDK
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.ja
va:1303)

> at java.util.concurrent.Semaphore.acquire(Semaphore.java:317)

> at
eu.javaspecialists.deadlock.lab3.java2d.MemoryManagqger.gc(MemoryManager.j

pansasay sybny 11y ‘Zingey) zuieH €10Z-Z1L0Z O

JFokus 2013 - Finding and Solving Java Deadlocks

What Is Wrong With This Code?

/71‘ s
* Only allow a maximum of 30 threads to call System.gc() at a time.
7(-/

public class MemoryManager extends Semaphore {
private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

public MemoryManager() {
super (MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS) ;

}

public void gc() {
try 1 Calling System.gc() is baddd (but not the problem)

acquire();

Cystemgc i

1nally
System.out.printlin("System.gc() called");

o
5
o
8
S
2

pansasay sybiy 11y ‘zanqge)) zuleH €10Z-Z1L0Z @

} catch (Exception ex) {
// 1gnore the InterruptedExceptig

Empty catch block hides problem

7 *

104

. !
le Deadlocks

' id ng Liveness Hazards

.Jc:vc:ggeg:r 3n||sts eu

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks

Lab 4: Unsolvable Deadlocks

® Problem: Sometimes, things go wrong in your application
that you cannot explain

® Challenge: You need to see if you can get the application to
stop and then use the thread dumps to solve the problem

Javaspecialists.eu

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

106

"..) \ J \

1 - - >~
| .y S . - _ ""’
> B o
-/ "
. T
4 P
- L -
&,, v o
- ' a
e -~
4) -

——

‘
2

— Resource Deadlock

.Javqgggglgrl‘llg‘tg.eu

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks

Lab4

® You are on your own

Javaspecialists.eu
pansesay sWbry Iy ‘Zinge)] zuleH €£1.0Z-Z1L0Z ©

108

‘ .
4

- Liveness Hazards

.Javqgggglgrl‘llg‘tg.eu

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

"'m.“

Javasg

JFokus 2013 - Finding and Solving Java Deadlocks

Conclusion On Deadlocks

® Concurrency is difficult, but there are tools and techniques
that we can use to solve problems

® These are just a few that we use

® For more information, have a look at

— The Java Specialists' Newsletter - http://www.javaspecialists.eu

® We have helped a lot of companies by training their Java
programmers

— Java Concurrency

pansesay syby 11y ‘Zinge)y) zuleH £10Z-210Z @

— Java Performance Tuning
— Java Design Patterns

— Advanced Java Techniques (Java NIO, threading, data structs, etc.

Javaspecialists.eu

JFokus 2013 - Finding and Solving Java Deadlocks

And One More Thing

® We have prepared a fourth lab for you to do at home
— Either take it along with a memory stick or get it from
— http://lwww.javaspecialists.eu/outgoing/jfokus2013.zip

— Send questions and comments to heinz@javaspecialists.eu

pansasay sybiy 11y ‘Zanqge)) zuleH £10Z-ZL0Z @

111

"..) \ J \

1 . - ‘ -
- .
{ R ;.» - : am
- ' o
! B
. N
4 P
» -
&,, v o
- ' a
f.'."‘ '
y =
N AY

——

‘ .
4

-heinz@javaspecialists.eu

.Javqgggglgrl‘llg‘tg.eu

pansasay sybny NIy ‘zingey) zulsH €£10Z-Z1L0Z @

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

