
JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

1

JFokus 2013 - Finding And
Solving Java Deadlocks

Dr Heinz Kabutz

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Heinz Kabutz

 Brief Biography
– German from Cape Town, now lives in Chania

– PhD Computer Science from University of Cape Town

– The Java Specialists' Newsletter

– Java programmer

– Java Champion since 2005

 Advanced Java Courses
– Concurrency Specialist Course

• Offered in Stockholm 19-22 March 2013

– Java Specialist Master Course

– Design Patterns Course

– http://www.javaspecialists.eu

2

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

4

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

5

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

6

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

7

1: Introduction

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

8

Structure Of Hands-On Lab

 Three short lectures, each followed by a short lab
– http://www.javaspecialists.eu/outgoing/jfokus2013.zip

 We only have three hours to cover a lot, so let's go!

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

9

Questions

 Please please please please ask questions!

 Interrupt us at any time
– This lab is on deadlocks, we need to keep focused in available time

 The only stupid questions are those you do not ask
– Once you’ve asked them, they are not stupid anymore

 The more you ask, the more we all learn

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

JFokus 2013 - Finding And
Solving Java Deadlocks

Avoiding Liveness Hazards

10

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

11

10: Avoiding Liveness Hazards

 Fixing safety problems can cause liveness problems
– Don't indiscriminately sprinkle "synchronized" into your code

 Liveness hazards can happen through
– Lock-ordering deadlocks

• Typically when you lock two locks in different orders
• Requires global analysis to make sure your order is consistent

– Lesson: only ever hold a single lock per thread!

– Resource deadlocks
• This can happen with bounded queues or similar mechanisms meant to

bound resource consumption

 A thread deadlocked in BLOCKED state can never recover

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab 1: Deadlock Resolution
By Global Ordering

Avoiding Liveness Hazards

12

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

13

Lab 1: Deadlock Resolution By Global Ordering

 Classic problem is that of the "dining philosophers"
– We changed that to the "drinking philosophers"

• That is where the word "symposium" comes from
– sym - together, such as "symphony"
– poto - drink

• Ancient Greek philosophers used to get together to drink & think

 In our example, a philosopher needs two glasses to drink
– First he takes the right one, then the left one

– When he finishes drinking, he returns them and carries on thinking

Concurrency Specialist Course v1.1

Table Is Ready, All Philosophers Are Thinking

14

1

25

4 3

10.1 D
eadlock

Concurrency Specialist Course v1.1

Philosophers 5 Wants To Drink, Takes Right Cup

15

1

25

4 3

10.1 D
eadlock

Concurrency Specialist Course v1.1

Philosopher 5 Is Now Drinking With Both Cups

16

1

25

4 3

10.1 D
eadlock

Concurrency Specialist Course v1.1

Philosophers 3 Wants To Drink, Takes Right Cup

17

1

25

4 3

10.1 D
eadlock

Concurrency Specialist Course v1.1

Philosopher 3 Is Now Drinking With Both Cups

18

1

25

4 3

10.1 D
eadlock

Concurrency Specialist Course v1.1

Philosophers 2 Wants To Drink, Takes Right Cup

But he has to wait for
Philosopher 3 to
finish his
drinking
session

19

1

25

4 3

10.1 D
eadlock

Concurrency Specialist Course v1.1

Philosopher 3 Finished Drinking, Returns Right
Cup

20

1

25

4 3

10.1 D
eadlock

Concurrency Specialist Course v1.1

Philosopher 2 Is Now Drinking With Both Cups

21

1

25

4 3

10.1 D
eadlock

Concurrency Specialist Course v1.1

Philosopher 3 Returns Left Cup

22

1

25

4 3

10.1 D
eadlock

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Drinking Philosophers In Limbo

 The standard rule is that every philosopher first picks up the
right cup, then the left
– If all of the philosophers want to drink and they all pick up the right cup,

then they all are holding one cup but cannot get the left cup

23

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

A Deadlock Can Easily Happen With This Design

24

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Wants To Drink, Takes Right Cup

25

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Wants To Drink, Takes Right Cup

26

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Wants To Drink, Takes Right Cup

27

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Wants To Drink, Takes Right Cup

28

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Wants To Drink, Takes Right Cup

29

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Deadlock!

 All the philosophers are
waiting for their left
cups, but they will
never become
available

30

1

25

4 3

Concurrency Specialist Course v1.1

Resolving Deadlocks

Deadlocks can be discovered automatically by searching
the graph of call stacks, looking for circular dependencies
– ThreadMXBean can find deadlocks for us, but cannot fix them

 In databases, the deadlock is resolved by one of the
queries being aborted with an exception
– The query could then be retried

 Java does not have this functionality
– When we get a deadlock, there is no clean way to recover from it

– Prevention is better than the cure

31
10.1 D

eadlock

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Global Order With Boozing Philosophers

 If all philosophers hold one cup, we deadlock
– Our solution must prevent all philosophers from holding one cup

 We can solve the deadlock with the "dining philosophers" by
requiring that locks are always acquired in a set order
– For example, we can make a rule that philosophers always first take the

cup with the largest number
• If it is not available, we block until it becomes available

– And return the cup with the lowest number first

32

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Global Lock Ordering

 We start with all the
philosophers thinking

33

1

25

4 3
4

3

21

5

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Takes Cup 5

 Cup 5 has higher number
– Remember our rule!

34

1

25

4 3
4

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Takes Cup 2

 Must take the cup with
the higher number
first
– In this case

cup 2

35

1

25

4 3
4

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Takes Cup 3

36

1

25

4 3
4

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Takes Cup 4

 Note that philosopher 4
is prevented from
holding one cup

37

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Takes Cup 1 - Drinking

38

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Returns Cup 1

 Cups are returned in the
opposite order to what
they are acquired

39

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Takes Cup 1 - Drinking

40

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Returns Cup 1

41

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Returns Cup 2

42

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Takes Cup 2 - Drinking

43

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Returns Cup 5

44

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Takes Cup 5

45

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Returns Cup 2

46

1

25

4 34

2

5

1

3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Returns Cup 3

47

1

25

4 4

5

1 2

3

3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Takes Cup 3 - Drinking

48

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Returns Cup 3

49

1

25

4 3

2

5

1

3

4

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Returns Cup 4

50

1

25

3

2

5

1

4

4

3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Takes Cup 4 - Drinking

51

1

25

4 34

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Returns Cup 4

52

1

25

4 3

3

21

4
5

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Returns Cup 5

 Deadlock free!

53

1

25

4 3
4

3

2

5

1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Deadlock Is Avoided

 Impossible for all philosophers to hold one cup

54

Concurrency Specialist Course v1.1

Dynamic Lock Order Deadlocks

Often, it is not obvious what the lock instances are, e.g.

55

public boolean transferMoney(
 Account from, Account to,
 DollarAmount amount) {
 synchronized (from) {
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
}

10.1 D
eadlock

Concurrency Specialist Course v1.1

Causing The Deadlock With Transferring Money

Giorgos has accounts in Switzerland and in Greece
– He keeps on transferring money between them

• Whenever new taxes are announced, he brings money into Greece
• Whenever he gets any money paid, he transfers it to Switzerland
• Sometimes these transfers can coincide

 Thread 1 is moving money from UBS to Alpha Bank

 Thread 2 is moving money from Alpha Bank to UBS

 If this happens at the same time, it can deadlock

56

transferMoney(ubs, alpha, new DollarAmount(1000));

transferMoney(alpha, ubs, new DollarAmount(2000));

10.1 D
eadlock

Concurrency Specialist Course v1.1

Fixing Dynamic Lock-Ordering Deadlocks

 The locks for transferMoney() are outside our control
– They could be sent to us in any order

We can induce an ordering on the locks
– For example, we can use System.identityHashCode() to get a number

representing this object
• Since this is a 32-bit int, it is technically possible that two different

objects have exactly the same identity hash code
• In that case, we have a static lock to avoid a deadlock

57
10.1 D

eadlock

Concurrency Specialist Course v1.1

public boolean transferMoney(Account from, Account to,
 DollarAmount amount) {
 int fromHash = System.identityHashCode(from);
 int toHash = System.identityHashCode(to);
 if (fromHash < toHash) {
 synchronized (from) {
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
 } else if (fromHash > toHash) {
 synchronized (to) {
 synchronized (from) {
 return doActualTransfer(from, to, amount);
 }
 }
 } else {
 synchronized (tieLock) {
 synchronized (from) {
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
 }
 }
}

58
10.1 D

eadlock

Concurrency Specialist Course v1.1

Imposing Natural Order

 Instead of System.identityHashCode(), we define an order
– Such as account number, employee number, etc.

– Or an order defined for the locks used

59

public class MonitorLock implements Comparable<MonitorLock> {
 private static AtomicLong nextLockNumber = new AtomicLong();
 private final long lockNumber = nextLockNumber.getAndIncrement();
 public int compareTo(MonitorLock o) {
 if (lockNumber < o.lockNumber) return -1;
 if (lockNumber > o.lockNumber) return 1;
 return 0;
 }
 public static MonitorLock[] makeGlobalLockOrder(
 MonitorLock... locks) {
 MonitorLock[] result = locks.clone();
 Arrays.sort(result);
 return result;
 }
}

10.1 D
eadlock

Concurrency Specialist Course v1.1

How To Find The Deadlocks

Deadlocks are almost always revealed in the thread dump

 They are not always shown as lock ordering deadlocks

Often the deadlocks require some detective work

60

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Capturing A Stack Trace

 JVisualVM is a tool for monitoring what the JVM is doing
– Found in the JDK/bin directory

– Double-click on application

61

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Click On "Threads" Tab

 Click on "Thread Dump" button

62

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Stack Trace Shows What Threads Are Doing

63

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

It Can Even Detect A Java-level Deadlock

64

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

65

Lab 1 Exercise

Deadlock resolution by global ordering

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab1

 Run SymposiumTest class to trigger deadlock
– You might need a few runs

 Define a global ordering for the locks that would prevent
deadlock
– We are synchronizing on the Krasi objects

– Define a global ordering for Krasi objects by implementing Comparable
and providing a unique number to sort on (Krasi.java)

– Change the code to use the global ordering (Thinker.java)

– Verify that the deadlock has now disappeared

 http://www.javaspecialists.eu/outgoing/jfokus2013.zip

66

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab1 Exercise Solution Explanation

 Goal: Prevent all philosophers from holding a single cup

67

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab1 Exercise Solution Explanation

 Goal: Prevent all philosophers from holding a single cup

 The set of first cups is 2,3,4,5
– This means that at most four philosophers can hold a single cup!

68

Thinker Cup 1
right

Cup 2
left

1 1 2

2 2 3

3 3 4

4 4 5

5 5 1

Thinker Cup 1
big

Cup 2
small

1 2 1

2 3 2

3 4 3

4 5 4

5 5 1

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab 2: Deadlock Resolution
By TryLock

Avoiding Liveness Hazards

69

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

70

Lab 2: Deadlock Resolution By TryLock

 Same problem as in Lab 1

 But our solution will be different

 Instead of a global order on the locks
– We lock the first lock

– We then try to lock the second lock
• If we can lock it, we start drinking
• If we cannot, we back out completely and try again

– What about starvation or livelock?

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lock And ReentrantLock

 The Lock interface offers different ways of locking:
– Unconditional, polled, timed and interruptible

 Lock implementations must have same memory-visibility
semantics as intrinsic locks (synchronized)

71

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long timeout, TimeUnit unit)
 throws InterruptedException;
 void unlock();
 Condition newCondition();
}

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

ReentrantLock Implementation

 Like synchronized, it offers reentrant locking semantics

 Also, we can interrupt threads that are waiting for locks
– Actually, the ReentrantLock never causes the thread to be BLOCKED, but

always WAITING

– If we try to acquire a lock unconditionally, interrupting the thread will
simply go back into the WAITING state

• Once the lock has been granted, the thread interrupts itself

72

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Using The Explicit Lock

 We have to call unlock() in a finally block
– Every time, without exception

– There are FindBugs detectors that will look for forgotten "unlocks"

73

private final Lock lock = new ReentrantLock();
public void update() {
 lock.lock(); // this should be before try
 try {
 // update object state
 // catch exceptions and restore
 // invariants if necessary
 } finally {
 lock.unlock();
 }
}

Concurrency Specialist Course v1.1

Synchronized Vs
ReentrantLock

Explicit Locks

74

Concurrency Specialist Course v1.1

Synchronized vs ReentrantLock

ReentrantLock and intrinsic locks have the same memory
semantics

Reentrant locks can have polled locks, timed waits,
interruptible waits and fairness
– Performance of contended ReentrantLock was much better in Java 5

However, intrinsic locks have significant advantages
– Very few programmers structure the try-finally block correctly:

75

lock.lock();
try {
 // do operation
} finally {
 lock.unlock();
}

13.4: Synchronized Vs R
eentrantLock

synchronized(this)
 // do operation
}

Concurrency Specialist Course v1.1

Bad Try-Finally Blocks

Either no try-finally at all

Or the lock is locked inside the try block

Or the unlock() call is forgotten in some places altogether!

76

lock.lock();
// do operation
lock.unlock();

try {
 lock.lock();
 // do operation
} finally {
 lock.unlock();
}

lock.lock();
// do operation

13.4: Synchronized Vs R
eentrantLock

Concurrency Specialist Course v1.1

When To Use ReentrantLock

Use it when you need
– lock.tryLock()

– lock.tryLock(timeout)

– lock.lockInterruptibly()

– fair locks

– Multiple condition variables for one lock

Otherwise, prefer synchronized

77
13.4: Synchronized Vs R

eentrantLock

Concurrency Specialist Course v1.1

Deadlock Monitoring

 Java 5 deadlock detection only works with synchronized

 In Java 6, it works with Lock and synchronized
– However, timed locks can be incorrectly detected as deadlocked

78
13.4: Synchronized Vs R

eentrantLock

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Polled Lock Acquisition

 Instead of unconditional lock, we can tryLock()

79

if (lock.tryLock()) {
 try {
 balance = balance + amount;
 } finally {
 lock.unlock();
 }
} else {
 // alternative path
}

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Using Try-Lock To Avoid Deadlocks

 Deadlocks happen when we lock multiple locks in different
orders

 We can avoid this by using tryLock()
– If we do not get lock, sleep for a random time and then try again

– Must release all held locks, or our deadlocks become livelocks

 This is possible with synchronized, see my newsletter
– http://www.javaspecialists.eu/archive/Issue194.html

80

©
 2012-2013 H

einz K
abutz, A

ll R
ights R

eserved
JFokus 2013 - Finding and Solving Java Deadlocks

public void drink() {
 while (true) {
 right.lock();
 try {
 if (left.tryLock()) {
 try {
 // now we can finally drink and then return
 } finally {
 left.unlock();
 }
 }
 } finally {
 right.unlock();
 }
 // sleep for a random time
 }
}

81

Using TryLock() To Avoid Deadlocks

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Deadlock Is Prevented In This Design

82

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Wants To Drink, Takes Right Cup

83

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Wants To Drink, Takes Right Cup

84

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Wants To Drink, Takes Right Cup

85

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Wants To Drink, Takes Right Cup

86

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Wants To Drink, Takes Right Cup

87

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Tries To Lock Left, Not Available

88

1

25

4 3

X

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Unlocks Right Again

 Now Philosopher 3 can
drink

89

1

25

4 3

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

90

Lab 2 Exercise

Deadlock resolution by tryLock

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab2

 Run SymposiumTest class to trigger deadlock
– You might need a few runs

 Use Lock.tryLock() to avoid blocking on the inner lock
– lock the right

– tryLock the left
• if success, then drink and unlock both
• otherwise, unlock right and retry

– Change the Thinker.java file

– Verify that the deadlock has now disappeared

 http://www.javaspecialists.eu/outgoing/jfokus2013.zip

91

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab2 Solution Explanation

 Goal: Prevent all philosophers from forever blocking on the
second cup
– A philosopher should not die of thirst

• We need to avoid livelocks
• lock/tryLock vs. tryLock/tryLock

92

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab 3: Resource Deadlock

Avoiding Liveness Hazards

93

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab 3: Resource Deadlock

 Problem: threads are blocked waiting for a finite resource
that never becomes available

 Examples:
– Resources not being released after use

• Running out of threads
• Java Semaphores not being released

– JDBC transactions getting stuck

– Bounded queues or thread pools getting jammed up

 Challenge:
– Does not show up as a Java thread deadlock

– Problem thread could be in any state: RUNNING, WAITING, BLOCKED

94

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

How To Solve Resource Deadlocks

 Approach: If you can reproduce the resource deadlock
– Take a thread snapshot shortly before the deadlock

– Take another snapshot after the deadlock

– Compare the two snapshots

 Approach: If you are already deadlocked
– Take a few thread snapshots and look for threads that do not move

 It is useful to identify the resource that is being exhausted
– A good trick is via phantom references (beyond scope of this lab)

95

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Resource Deadlocks

 We can also cause deadlocks waiting for resources

 For example, say you have two DB connection pools
– Some tasks might require connections to both databases

– Thus thread A might hold semaphore for D1 and wait for D2, whereas
thread B might hold semaphore for D2 and be waiting for D1

 Thread dump and ThreadMXBean does not show this as a
deadlock!

96

©
 2012-2013 H

einz K
abutz, A

ll R
ights R

eserved
JFokus 2013 - Finding and Solving Java Deadlocks

Our DatabasePool - Connect() And Disconnect()

public class DatabasePool {
 private final Semaphore connections;
 public DatabasePool(int connections) {
 this.connections = new Semaphore(connections);
 }

 public void connect() {
 connections.acquireUninterruptibly();
 System.out.println("DatabasePool.connect");
 }

 public void disconnect() {
 System.out.println("DatabasePool.disconnect");
 connections.release();
 }
}

97

©
 2012-2013 H

einz K
abutz, A

ll R
ights R

eserved
JFokus 2013 - Finding and Solving Java Deadlocks

ThreadMXBean Does Not Detect This Deadlock

DatabasePool.connect
DatabasePool.connect

98

©
 2012-2013 H

einz K
abutz, A

ll R
ights R

eserved
JFokus 2013 - Finding and Solving Java Deadlocks

Stack Trace Gives A Vector Into The Code

public class DatabasePool {
 // ...

 public void connect() {
 connections.acquireUninterruptibly(); // line 12
 System.out.println("DatabasePool.connect");
 }
}

99

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

100

Lab 3 Exercise

Resource Deadlock

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab3 Exercise Lab3/readme.txt

 Start our modified Java2Demo
– Connect JVisualVM

and dump all threads

– Use Java2Demo for a while
until it deadlocks

– Get another thread dump and
compare to the first one

• This should show you where
the problem is inside your code

– Fix the problem and verify that it has been solved
• Hint: Your colleagues probably write code like this, but you shouldn't

101

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab3 Exercise Solution Explanation

 Goal: Ensure that resources are released after use

 Diff between the two thread dumps using jps and jstack

– Most likely the fault will be in one of our classes, rather than the JDK

102

< at java.util.concurrent.locks.AbstractQueuedSynchronizer
$ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
< at java.awt.EventQueue.getNextEvent(EventQueue.java:531)
< at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:213)

> at
java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:
834)
> at
java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer
.java:994)
> at
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.ja
va:1303)
> at java.util.concurrent.Semaphore.acquire(Semaphore.java:317)
> at
eu.javaspecialists.deadlock.lab3.java2d.MemoryManager.gc(MemoryManager.j
ava:56)
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryMonitor$Surface.paint(MemoryMonitor.java:153)

©
 2012-2013 H

einz K
abutz, A

ll R
ights R

eserved
JFokus 2013 - Finding and Solving Java Deadlocks

What Is Wrong With This Code?
/**
 * Only allow a maximum of 30 threads to call System.gc() at a time.
 */
public class MemoryManager extends Semaphore {
 private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

 public MemoryManager() {
 super(MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS);
 }

 public void gc() {
 try {
 acquire();
 try {
 System.gc();
 } finally {
 System.out.println("System.gc() called");
 release();
 }
 } catch (Exception ex) {
 // ignore the InterruptedException
 }
 }
}

103

Calling System.gc() is baddd (but not the problem)

Empty catch block hides problem

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab 4: Unsolvable Deadlocks

Avoiding Liveness Hazards

104

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab 4: Unsolvable Deadlocks

 Problem: Sometimes, things go wrong in your application
that you cannot explain

 Challenge: You need to see if you can get the application to
stop and then use the thread dumps to solve the problem

105

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

106

Lab 4 Exercise

Resource Deadlock

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Lab4

 You are on your own

107

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Wrap Up

Avoiding Liveness Hazards

108

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

Conclusion On Deadlocks

 Concurrency is difficult, but there are tools and techniques
that we can use to solve problems

 These are just a few that we use

 For more information, have a look at
– The Java Specialists' Newsletter - http://www.javaspecialists.eu

 We have helped a lot of companies by training their Java
programmers
– Java Concurrency

– Java Performance Tuning

– Java Design Patterns

– Advanced Java Techniques (Java NIO, threading, data structs, etc.

109

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

And One More Thing

 We have prepared a fourth lab for you to do at home
– Either take it along with a memory stick or get it from

– http://www.javaspecialists.eu/outgoing/jfokus2013.zip

– Send questions and comments to heinz@javaspecialists.eu

110

JFokus 2013 - Finding and Solving Java Deadlocks
©

 2012-2013 H
einz K

abutz, A
ll R

ights R
eserved

111

Questions?

heinz@javaspecialists.eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

