

How to fail a project

Thomas Sundberg

Developer for more than 20 years

Masters degree in Computer Science from the Royal Institute
of Technology, KTH, in Stockholm, Sweden

I write computer programs

@thomassundberg
tsu@kth.se

http://thomassundberg.wordpress.com

Goal

Describe a set of patterns that will assist you to
fail a project

Organisation

Division

Analysis

Architecture

Development

Configuration management

Test

Operation

Line and projects

Line management

Divide employees between projects

Company policies

Enforce the usage of common framework

One tool shall solve all problems

Force the usage of the same development
environment

Working offsite

Make it extremely difficult to work from home

No laptops

No VPN

No external ssh

Control

All details

Never self organise

Measuring

How many bugs have one person fixed

Test coverage

Improvement

No regular retrospectives

Management should define all improvements

Personal development

Hire personnel with the proper skills

Don't pay for any courses

Never send people on conferences

Don't sponsor any books

Learn new things on personal time

Demotivation

Criticize in public

Don't invest in tools

No large screens

Managers should have the fastest computers

Resources

Refer to people as resources

Resources can be replaced

Demand overtime

40 hours a week is for wimps

Avoid a clear goal for the extra effort

Hero culture

One person who solves all problem

Communication

Bandwidth

Low High

Written

Prefer

Can be read at any time

Meetings

Schedule lots of meetings

Prefer long meetings

Demand that everyone attend

Cancel them late

Don't show up

Show up unprepared

Long meetings

Avoid decisions

Schedule another meeting for decision

Daily stand up

Standup meetings are just uncomfortable

Weekly dev meetings

Long

Cancel them often

MoM

Always demand written MoM after every
meeting

Mail

Always top post

Always high priority

Add all recipients in the to field

Add more people to a thread

Wrong subject

Specifications

Always written

Avoid examples

A specification

A specification

Common language

No need for a common language

No need for system metaphors

The same view of the system

Customer

Avoid having the customer at the same
premisses as the developers

Definition of done

Everybody knows when a functionality is done

Separate dev and ops

Devs should not be allowed into the production
systems

Devs should develop deployment packages and
scripts

Devs should be responsible for bug fixing

Planning

Planning

Plan 12 months ahead with all details up-front

Follow the plan strict

Collective planning

Never!

One person should estimate all tasks

Planning poker is just a waste of time

Estimation

Force estimates onto people

This really can't take more than 4 hours?

Design

Committee

All important design decisions

No regular meetings

Unusual frameworks

Home made

Commercial

Ivory tower

Only employ ivory tower architects

Singletons

Supports global variables and state

Singletons

http://blog.code-cop.org/2012/01/why-singletons-are-evil.html

Non functional requirements

Define load test as

“Must cope with high load”

Security

Add last

System communication

Must be system agnostic

Prefer xml over http

Simple design

Is for simple systems

Complex systems demand a complex design

Four rules of simple design

No need to follow

All test passes

Reveal intent

No duplication

Small

Colours

Do not be afraid to use colours

Red and green are great colours to mix

Development

Coding standards

Should be defined by a management committee

Version Control System

A shared disk should be enough

Clear Case

Code ownership

One developer owns the code in each module

Forbid other developers to edit that code

Refactoring

Avoid re-doing things

Get it right the first time

Refuctoring

Complicate the code whenever possible

Continuous integration

A waste of resources

Have developers chase down missing files

Configuration Manager

One CM should be enough

No automation

Build manual

Priorities

Largest project always most important

The project with most people

Smaller projects have to adopt

Wait

Rush

Accept broken builds

Systems sometimes doesn't compile

Do not stop the line to fix the build

Good practices

Pair programming

Inefficient

Expensive

Forbid TDD

Testing should be added last

100% test coverage

Anything less is a failure

Javadoc

Demand 100% javadoc

Testing

Add quality at the end

Quality should be assured last

Testing early will test things that is not done yet

Performance can be added at the end

Functional testing

Manual

Through the user interface

Corner cases

Focus on corner cases

The most common cases will be tested anyway

Easy parts first

Postpone testing of difficult cases as long as
possible

Stable areas

Prefer to test stable areas to avoid hassle with
bug reports

Load test

Should be done when the system is ready

Use the right tools

Automation

Testing should be done manually

It is to important to be left to a computer

Only a human being can judge a user interface

Automation

http://watirmelon.com/tag/ice-cream-cone/

Production

Avoid deployment to production

Risky and error prone

Different environments by different people

Reduce the number of times

Maximum 2 times a year

Never any small releases

Continuous deployment

Deployment is risky

Has to be done manual

Not

All I have said here is wrong

Negate everything

Agile manifesto

Individuals and interactions

over processes and tools

Working software

over comprehensive documentation

Customer collaboration

over contract negotiation

Responding to change

over following a plan

Principles behind the Agile
manifesto

Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile processes harness change for the customer's
competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter
timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need, and trust them to get
the job done.

The most efficient and effective method of conveying information to and within a development team is face-to-face
conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity - the art of maximizing the amount of work not done - is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behaviour
accordingly.

XP principles
Fine scale feedback

Pair programming

Planning game

Test-driven development

Whole team

Continuous process

Continuous integration

Refactoring or design improvement

Small releases

Shared understanding

Coding standards

Collective code ownership

Simple design

System metaphor

Programmer welfare

Sustainable pace

Resources

Agile manifesto - http://agilemanifesto.org/

XP - http://www.extremeprogramming.org/

My blog - http://thomassundberg.wordpress.com/

How to fail a project

Thomas Sundberg

Developer for more than 20 years

Masters degree in Computer Science from the Royal Institute
of Technology, KTH, in Stockholm, Sweden

I write computer programs

@thomassundberg
thomas.sundberg@waymark.se

http://thomassundberg.wordpress.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

