
Java and the Machine

Martijn Verburg - CTO @ jClarity

(@karianna)

This guy is coming for you

The developer version of the T-800

Do you know what this is?

A relic of a simpler era!!

Intel 4004 - 1971

108khz-740khz

10µm die (1/10th of human hair)

16 pin DIP

2,300 transistors

shared address and data bus

46300 or 92600 instructions / second

Instruction cycle of 10.8 or 21.6 µs (8 clock cycles / instruction cycle)

4 bit bus (12 bit addressing, 8 bit instruction, 4 bit word)

46 instructions (41-8 bit, 5-16 bit), described in a 9 page doc!!!

Intel i7 - 2008

3.3Ghz (4200x)

2nm die (5000x smaller)

64 bit instructions

1370 landings

774 million transistors (~336,000x)

50000x less expensive, 350,000x faster, 5000x less power / transistor

31 stage instruction pipeline (instructions retired @ 1 / clock)

• adjacent and nearly adjacent instructions run at the same time

packaging doc is 102 pages

MSR documentation is well over 7000 pages

So we have lots of challenges!

• Back to basics

• Challenge: Hardware Threads

• Challenge: Virtualisation

• Challenge: The JVM

• Challenge: Java

• Conclusion

This talk might hurt
T-800 don't care

9

Back to Basics

• Moore's Law

• Little's Law

• Amdahl's Law

• It's the hardware stupid!

• What can I do?

Moore's Law

• It's about transistors not clocks

Little's Law

λ = 1 / µ

average # of attendees =
arrivals / h * length of stay 500 = 1000 * 0.5

alternatively

=>

Little's Law

λ = 1 / µ
Throughput = 1 / Service Time

average # of attendees =
arrivals / h * length of stay 500 = 1000 * 0.5

alternatively

=>

Amdahl's Law

P = proportion
S = speedup

e.g.

P = 0.3 means
30% of the alg can
be sped up

S = 2 twice as fast

It's the Hardware stupid!

• Software often thinks there are no limitations
– If you're Turing complete you can do anything!

• The reality is that its fighting over finite resources
– You remember hardware right?

• These all have finite capacities and throughputs
– CPU
– RAM
– Disk
– Network
– Bus

Mechanical Sympathy

Mechanical Sympathy
-

"Hardware and Software
working together"

— Martin Thompson

What can I do?

• Don't panic

• Learn the laws
– Have them up next to your monitor

• Code the laws
– See them in action!

• Amdahl's law says "don't serialise!"
– With no serialisation, no need to worry abut Little's law!

• Understand what hardware you have
– Understand capacities and throughputs
– Learn how to measure, not guess those numbers

Still with me?
Good.

17

Hardware Threads

• Threads are non deterministic

• Single threaded programs

• Multi core programs

• What can I do?

• Protect your code

Threads are non-deterministic

"Threads seem to be a small step
from sequential computation"

"In fact, they represent a huge
step."

— The Problem with Threads, Edward A. Lee, UC Berkeley, 2006

In the beginning there was fork

• It was a copy operation
– No common memory space
– So we had to work hard to share state between processes

• Everything was local to us
– We had no race conditions
– Hardware caching was transparent, we didn't care
– And we could cache anything at anytime without fear!

• Life was simpler
– Ordering was guaranteed

In case you've forgotten

In case you've forgotten

Then we had multi-thread / single core

• new Thread() is like a light-weight fork
– Memory is now shared
– You don't work hard to share state
– Instead you work hard to guarantee order

• Guaranteeing order is a much harder problem
– We started with volatile and synchronized
– They were fence builders, to help guarantee order
– It made earlier processors do more work

• Hardware, O/S & JVM guys were playing leap frog!

Now we have multiple hardware threads

• new Thread() is still a light-weight fork
– Memory is still shared
– Now we have to work hard to share state due to caching
– We still have to work hard to guarantee order

• Guaranteed order is now a performance hit
– volatile and synchronized force draining and

refreshing of caches
– Some support to get around this (CAS)
– Some more support to get around this (NUMA)

• Hardware, O/S & JVM guys are still playing leap frog!

What can I do?

"We protect code with the hope
of protecting data."

— Gil Tene, Azul Systems, 2008

Protect your data

• You can use a bunch of different techniques
– synchronized
– volatile
– atomics, e.g. AtomicInteger
– Explicit Java 5 Locks, e.g. ReentrantLock

• But these all have a performance hit

• Lets see examples of these in action

The following source code can be
read later

Don't worry! there is a point to this

27

Running Naked

private int counter;
public void execute(int threadCount) {
 init();
 Thread[] threads = new Thread[threadCount];
 for (int i = 0; i < threads.length; i++) {
 threads[i] = new Thread(new Runnable() {
 public void run() {
 long iterations = 0;
 try {
 while (running) {
 counter++;
 counter--;
 iterations++;
 }
 } finally {
 totalIterations += iterations;
 }
 }
 });
 }
 ...

Using volatile

 private volatile int counter;
 public void execute(int threadCount) {
 init();
 Thread[] threads = new Thread[threadCount];
 for (int i = 0; i < threads.length; i++) {
 threads[i] = new Thread(new Runnable() {
 public void run() {
 long iterations = 0;
 try {
 while (running) {
 counter++;
 counter--;
 iterations++;
 }
 } finally {
 totalIterations += iterations;
 }
 }
 });
 }
 ...

Using synchronized

 private int counter;
 private final Object lock = new Object();
 public void execute(int threadCount) {
 init();
 Thread[] threads = new Thread[threadCount];
 for (int i = 0; i < threads.length; i++) {
 threads[i] = new Thread(new Runnable() {
 public void run() {
 long iterations = 0;
 try {
 while (running) {
 synchronized (lock) {
 counter++;
 counter--;
 }
 iterations++;
 }
 } finally {
 totalIterations += iterations;
 }
 }
 });
 }
 ...

Using fully explicit Locks

 private int counter;
 private final ReentrantReadWriteLock lock =
 new ReentrantReadWriteLock();
 public void execute(int threadCount) {
 init();
 Thread[] threads = new Thread[threadCount];
 for (int i = 0; i < threads.length; i++) {
 threads[i] = new Thread(new Runnable() {
 public void run() {
 long iterations = 0;
 try {
 while (running) {
 try {
 lock.writeLock.lock();
 counter++;
 counter--;
 } finally {
 lock.writeLock.unlock();
 }
 iterations++;
 }
 } finally {
 totalIterations += iterations;
 }
 ...

Using AtomicInteger

 private AtomicInteger counter = new AtomicInteger(0);
 public void execute(int threadCount) {
 init();
 Thread[] threads = new Thread[threadCount];
 for (int i = 0; i < threads.length; i++) {
 threads[i] = new Thread(new Runnable() {
 public void run() {
 long iterations = 0;
 try {
 while (running) {
 counter.getAndIncrement();
 counter.getAndDecrement();
 iterations++;
 }
 } finally {
 totalIterations += iterations;
 }
 ...

A small benchmark comparison

A small benchmark comparison

Locking kills performance!

34

Challenge: Virtualisation

• Better utilisation of hardware?

• You can't virtualise into more hardware

• What can I do?

Virtualisation

"Why do we do it?"
— Martijn Verburg and Kirk Pepperdine, JAX London 2012

Better utilisation of hardware?

• Could be utopia because we waste hardware?
– Most hardware is idle
– Load averages are far less than 10% on many systems

• But why are our systems under utilised?
– Often because we can't feed them (especially CPU)
– Throughput in a system is often limited by a single resource

• People have forgotten to ask the question
– Sadly first principles are forgotten

T-800 is incapable of seeing your process

"A Process is defined as a locus
of control, an instruction

sequence and an abstraction
entity which moves through the
instructions of a procedure, as
the procedure is executed by a

processor"
— Jack B Dennis, Earl C Van Horn, 1965

Processes don't exist
as far as hardware is concerned

39

You can't virtualise into more hardware!

• Throughput is often limited by a single resource
– That bottleneck can starve everybody else!

• Going from most problematic to most problematic
– Network, Disk, RAM, CPU
– Throughput overwhelms the wire
– NAS means more pressure on network
– CPU/RAM speed gap growing (8% per year)
– Many thread scheduling issues (including cache!)
– The list goes on and on and on..........

• VMs sharing hardware causes resource conflict
– You need more than core affinity

What can I do?

• Build your financial and capacity use cases
– TCO for virtual vs bare metal
– What does your growth curve look like?

• CPU Pinning trick / Processor Affinity

• Memory Pinning trick

• Move back to bare metal!
– It's OK - really!

Final Thought

"There are many reasons to move
to the cloud - performance isn't

necessarily one of them."
— Kirk Pepperdine - random rant - 2010

Challenge: The JVM

• WORA

• The cost of a strong memory model

• GC scalability

• GPU

• File Systems

• What can I do?

Brian Goetz et al?
You've got a lot of work to do

44

WORA costs

• CPU Model differences
– When are where are you allowed to cache?
– When and where are you allowed to reorder?
– AMD vs Intel vs Sparc vs ARM vs

• File system differences
– O/S Level support

• Display Devices - Argh!
– Impossible to keep up with the consumer trends
– Aspect ratios, resolution, colour depth etc

• Power
– From unlimited to extremely limited

The cost of the strong memory model

• The JVM is ultra conservative
– It rightly ensures correctness over performance

• Locks enforce correctness
– But in a very pessimistic way, which is expensive

• Locks delineate regions of serialisation
– Serialisation?
– Uh oh! Remember Little's and Amdahl's laws?

The visibility mismatch

• Unit of visibility on a CPU != that in the JVM
– CPU - Cache Line
– JVM - Where the memory fences in the instruction pipeline

are positioned

• False sharing is an example of this visibility mismatch
– volatile creates a fence which flushes the cache

• We think that volatile is a modifier on a field
– In reality it's a modifier on a cache line

• It can make other fields accidentally volatile

GC Scalability

• GC cost is dominated by the # of live objects in heap
– Larger Heap ~= more live objects

• Mark identifies live objects
– Takes longer with more objects

• Sweep deals with live objects
– Compaction only deals with live objects
– Evacuation only deals with live objects

• G1, Zing, and Balance are no different!
– They still have to mark and sweep live objects
– Mark for Zing is more efficient

GPU

• Can't utilise easily today
– Java does not have normalised access to the GPU
– The GPU does not have access to Java heap

• Today - third party libraries
– That translate byte code to GPU RISC instructions
– Bundle the data and the instructions together
– Then push data and instructions through the GPU

• Project Sumatra on its way
– http://openjdk.java.net/projects/sumatra/
– Aparapi backs onto OpenCL

• CPU and GPU memory to converge?

What can I do?

• Not using java.util.concurrent?
– You're probably doing it wrong

• Avoid locks where possible!
– They make it difficult to run processes concurrently
– But don't forget integrity!

• Use Unsafe to implement lockless concurrency
– Dangerous!!
– Allows non-blocking / wait free implementations
– Gives us access to the pointer system
– Gives us access to the CAS instruction

• Cliff Click's awesome lib
– http://sourceforge.net/projects/high-scale-lib/

A reminder of Unsafe

What can I do?

• Workaround GC with SLAB allocators
– Hiding the objects from the GC in native memory
– It's a slippery slope to writing your own GC

• We're looking at you Cassandra!

• Workaround GC using near cache
– Storing the objects in another JVM

• Peter Lawrey's thread affinity OSS project
– https://github.com/peter-lawrey/Java-Thread-Affinity

• Join Adopt OpenJDK
– http://www.java.net/projects/adoptopenjdk

Challenge: Java

• java.lang.Thread is low level

• File systems

• Functional and Parallel

• What can I do?

java.lang.Thread is low level

• Has low level co-ordination
– wait()
– notify(), notifyAll()

• Also has dangerous operations
– stop() unlocks all the monitors - leaving data in an

inconsistent state

• java.util.concurrent helps
– But managing your threads is still manual

Functional and Parallel

• State of play today
– Manual parallelism
– Very difficult to get right

• Java 8 will solve much of this
– Lambdas
– Internal iteration as opposed to external iteration
– means you can multi-thread over a collection

• JSR-166y - parallel collections
– Doug Lea et al on the concurrency-interest list
– Collections libraries will be enhanced
– .parallel()

File Systems

• Java 7 to the rescue!
– Move to it as soon as you can

• It was difficult to do asynchronous I/O
– You would get stalled on large file interaction
– You would get stalled on multi-casting

• There was no native file system support
– NIO bought in pipe and selector support
– NIO.2 bought in symbolic links support

What can I do?

• Read Brian Goetz's book
– Java Concurrency in Practice

• Move to java.util.concurrent
– People smarter than us have thought about this
– Use Runnables, Callables and ExecutorServices

• Use thread safe collections
– ConcurrentHashMap
– CopyOnWriteArrayList

• Move to Java 7
– NIO.2 gives you asynchronous I/O!
– Fork and Join helps with Amdahls law

Conclusion

• Learn about hardware again
– Check your capacity and throughput

• Virtualise with caution
– It can work for and against you

• The JVM needs to evolve and so do you
– OpenJDK is adapting, hopefully fast enough!

• Learn to use parallelism in code
– Challenge each other in peer reviews!

Don't become extinct

Be like Sarah

Acknowledgements

• The jClarity Team

• Gil Tene - Azul Systems

• Warner Bros pictures

• Lionsgate Films

• Dan Hardiker - Adaptivist

• Trisha Gee - 10gen

• James Gough - Stackthread

http://www.jclarity.com

Martijn Verburg (@karianna)

http://www.jclarity.com
http://www.jclarity.com

