
A Little Graph Theory for the
Busy Developer

Dr. Jim Webber

Chief Scientist, Neo Technology

@jimwebber

Roadmap

• Imprisoned data models
– Why most NoSQL stores and RDBMS are clumsy for

connected data

• Labeled Property Graph model

• Graph theory for predictive analytics
– South East London and World War I

• Graph matching for real-time insight
– Beer, nappies and Xbox

• Q&A

http://www.flickr.com/photos/crazyneighborlady/355232758/

http://gallery.nen.gov.uk/image82582-.html

Aggregate-Oriented Data
http://martinfowler.com/bliki/AggregateOrientedDatabase.html

“There is a significant downside - the whole approach works really well

when data access is aligned with the aggregates, but what if you want to

look at the data in a different way? Order entry naturally stores orders as

aggregates, but analyzing product sales cuts across the aggregate structure.

The advantage of not using an aggregate structure in the database is that it

allows you to slice and dice your data different ways for different

audiences.

This is why aggregate-oriented stores talk so much about map-reduce.”

complexity = f(size, connectedness, uniformity)

http://www.bbc.co.uk/london/travel/downloads/tube_map.html

http://en.wikipedia.org/wiki/File:Leonhard_Euler_2.jpg

Meet Leonhard Euler

• Swiss mathematician

• Inventor of Graph
Theory (1736)

12

Königsberg (Prussia) - 1736

http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
14

Labeled Property graph model

• Nodes with optional properties and optional
labels

• Named, directed relationships with optional
properties

– Relationships have exactly one start and end node

– Which may be the same node

stole
from

loves
loves

enemy

enemy

A Good Man
Goes to War

appeared
in

appeared
in

appeared
in

appeared
in

Victory of
the Daleks

appeared
in

appeared
in

companion

companion

enemy

stole
from

loves
loves

enemy

enemy

A Good Man
Goes to War

appeared
in

appeared
in

appeared
in

appeared
in

Victory of
the Daleks

appeared
in

appeared
in

companion

companion

enemy

planet

prop

species

species

species

character

character

character

episode

episode

http://blogs.adobe.com/digitalmarketing/analytics/predictive-analytics/predictive-analytics-and-the-digital-marketer/

Triadic Closure

name: Kyle

name: Stan name: Kenny

Triadic Closure

name: Kyle

name: Stan name: Kenny

name: Kyle

name: Stan name: Kenny
FRIEND

Structural Balance

name: Cartman

name: Craig name: Tweek

Structural Balance

name: Cartman

name: Craig name: Tweek

name: Cartman

name: Craig name: Tweek
FRIEND

Structural Balance

name: Cartman

name: Craig name: Tweek

name: Cartman

name: Craig name: Tweek
ENEMY

Structural Balance

name: Kyle

name: Stan name: Kenny

name: Kyle

name: Stan name: Kenny
FRIEND

Structural Balance is a key
predictive technique

And it’s domain-agnostic

Allies and Enemies

UK

Germany France

Russia Italy

Austria

Allies and Enemies

UK

Germany France

Russia Italy

Austria

Allies and Enemies

UK

Germany France

Russia Italy

Austria

Allies and Enemies

UK

Germany France

Russia Italy

Austria

Allies and Enemies

UK

Germany France

Russia Italy

Austria

Allies and Enemies

UK

Germany France

Russia Italy

Austria

Predicting WWI
[Easley and Kleinberg]

Strong Triadic Closure

It if a node has strong relationships to two
neighbours, then these neighbours must have at
least a weak relationship between them.

[Wikipedia]

Triadic Closure
(weak relationship)

name: Kenny

name: Stan name: Cartman

Triadic Closure
(weak relationship)

name: Kenny

name: Stan name: Cartman

name: Kenny

name: Stan name: Cartman

FRIEND 50%

Weak relationships

• Relationships can have “strength” as well as
intent

– Think: weighting on a relationship in a property
graph

• Weak links play another super-important
structural role in graph theory

– They bridge neighbourhoods

Local Bridges

FRIEND

name: Kenny

name: Stan name: Kyle
FRIEND

FRIEND

name: Sally

name: Bebe name: Wendy
FRIEND

FRIEND 50%

name: Cartman
FRIEND

ENEMY

Local Bridge Property

“If a node A in a network satisfies the Strong
Triadic Closure Property and is involved in at
least two strong relationships, then any local
bridge it is involved in must be a weak
relationship.”

[Easley and Kleinberg]

University Karate Club

Graph Partitioning

• (NP) Hard problem

– Recursively remove the spanning links between
dense regions

– Or recursively merge nodes into ever larger
“subgraph” nodes

– Choose your algorithm carefully – some are better
than others for a given domain

• Can use to (almost exactly) predict the
break up of the karate club!

University Karate Clubs
(predicted by Graph Theory)

9

University Karate Clubs
(what actually happened!)

Cypher

• Declarative graph pattern matching language

– “SQL for graphs”

– A humane tool pioneered by a tamed SQL DBA

• A pattern graph matching language

– Find me stuff like…

Firstname:

Mickey

Surname: Smith

DoB: 19781006

SKU: 5e175641

Product:

Badgers

Nadgers Ale

SKU: 2555f258

Product:

Peewee Pilsner

Category: beer

SKU: 49d102bc

Product: Baby

Dry Nights

Category:

nappies

Category: baby Category:

alcoholic

drinks

SKU: 49d102bc

Product: XBox

360

Category:

consumer

electronics

Category:

console

BOUGHT BOUGHT

M
E
M
B
E
R
_
O
F

MEMBER_OF MEMBER_OF

MEMBER_OF MEMBER_OF

Firstname: *

Surname: *

DoB: 1996 > x

> 1972

Category: beer Category:

nappies

BOUGHT Category: game

console

Firstname: *

Surname: *

DoB: 1996 > x

> 1972

Category: beer Category:

nappies

!BOUGHT Category: game

console

(beer) (nappies)

(console)

(daddy)

() ()

()

Flatten the graph

(d)-[:BOUGHT]->()-[:MEMBER_OF]->(n)

(d)-[:BOUGHT]->()-[:MEMBER_OF]->(b)

(d)-[:BOUGHT]->()-[:MEMBER_OF]->(c)

Include any labels

(d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category)

(d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category)

(d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(c:Category)

Add a MATCH clause

MATCH (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category),

 (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category)

Constrain the Pattern

MATCH (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category),

 (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category),

 (c:Category)

WHERE NOT((d)-[:BOUGHT]->()-[:MEMBER_OF]->(c))

Add property constraints

MATCH (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category),

 (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category),

 (c:Category)

WHERE n.category = "nappies" AND

 b.category = "beer" AND

 c.category = "console" AND

 NOT((d)-[:BOUGHT]->()-[:MEMBER_OF]->(c))

Profit!

MATCH (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category),

 (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category),

 (c:Category)

WHERE n.category = "nappies" AND

 b.category = "beer" AND

 c.category = "console" AND

 NOT((d)-[:BOUGHT]->()-[:MEMBER_OF]->(c))

RETURN DISTINCT d AS daddy

Results

==> +---+

==> | daddy |

==> +---+

==> | Node[15]{name:"Rory Williams",dob:19880121} |

==> +---+

==> 1 row

==> 0 ms

==>

neo4j-sh (0)$

Facebook Graph Search

Which sushi restaurants in
NYC do my friends like?

See http://maxdemarzi.com/

Graph Structure

Cypher query is easy!

MATCH (me)

 -[:IS_FRIEND_OF]->()

 -[:LIKES]->(restaurant)

 -[:LOCATED_IN]->(city),

 (restaurant)-[:SERVES]->(cuisine)

WHERE me.name = 'Jim' AND

 city.location='New York' AND

 cuisine.cuisine='Sushi'

RETURN restaurant

And richer with labels

MATCH (me:Person)

 -[:IS_FRIEND_OF]->(:Person)

 -[:LIKES]->(restaurant:Restaurant)

 -[:LOCATED_IN]->(city:Place),

 (restaurant)-[:SERVES]->(cuisine:Cuisine)

WHERE me.name = 'Jim' AND

 city.location='New York' AND

 cuisine.cuisine='Sushi'

RETURN restaurant

And clearer with compact MATCH…

MATCH (:Person {name: 'Jim'})

 -[:IS_FRIEND_OF]->(:Person)

 -[:LIKES]->(restaurant:Restaurant)

 -[:LOCATED_IN]->(:Place {location: 'New York'}),

 (restaurant)-[:SERVES]->(:Cuisine {cuisine: 'Sushi'})

RETURN restaurant

Search structure

What’s Neo4j good for?

• Data centre management
• Supply chain/provenance
• Recommendations
• Business intelligence
• Social computing
• MDM
• Web of things
• Time series/event data
• Product/engineering catalogue
• Web analytics, user journeys
• Scientific computing
• Spatial
• Geo/Seismic/Meteorological
• Bio/Pharma
• And many, many more…

credit: @markhneedham

Free O’Reilly book!

Free Full eBook version:
http://graphdatabases.com

for the eBook version

Don’t forget the Neo4j
Stockholm Meetups!

Thanks for listening
@jimwebber

