
A Little Graph Theory for the 
Busy Developer 

Dr. Jim Webber 

Chief Scientist, Neo Technology 

@jimwebber 



Roadmap 

• Imprisoned data models 
– Why most NoSQL stores and RDBMS are clumsy for 

connected data 

• Labeled Property Graph model 

• Graph theory for predictive analytics 
– South East London and World War I 

• Graph matching for real-time insight 
– Beer, nappies and Xbox 

• Q&A 





http://www.flickr.com/photos/crazyneighborlady/355232758/ 



http://gallery.nen.gov.uk/image82582-.html 





Aggregate-Oriented Data 
http://martinfowler.com/bliki/AggregateOrientedDatabase.html 

“There is a significant downside - the whole approach works really well 

when data access is aligned with the aggregates, but what if you want to 

look at the data in a different way? Order entry naturally stores orders as 

aggregates, but analyzing product sales cuts across the aggregate structure. 

The advantage of not using an aggregate structure in the database is that it 

allows you to slice and dice your data different ways for different 

audiences. 

 

This is why aggregate-oriented stores talk so much about map-reduce.” 





complexity = f(size, connectedness, uniformity) 





http://www.bbc.co.uk/london/travel/downloads/tube_map.html 



http://en.wikipedia.org/wiki/File:Leonhard_Euler_2.jpg 

Meet Leonhard Euler 

• Swiss mathematician 

• Inventor of Graph 
Theory (1736) 
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Königsberg (Prussia) - 1736 



http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg 
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Labeled Property graph model 

• Nodes with optional properties and optional 
labels 

• Named, directed relationships with optional 
properties 

– Relationships have exactly one start and end node 

– Which may be the same node 
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http://blogs.adobe.com/digitalmarketing/analytics/predictive-analytics/predictive-analytics-and-the-digital-marketer/ 
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Structural Balance is a key 
predictive technique 

And it’s domain-agnostic 
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Predicting WWI  
[Easley and Kleinberg] 



Strong Triadic Closure 

It if a node has strong relationships to two 
neighbours, then these neighbours must have at 
least a weak relationship between them. 

 

[Wikipedia] 



Triadic Closure 
(weak relationship) 
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Weak relationships 

• Relationships can have “strength” as well as 
intent 

– Think: weighting on a relationship in a property 
graph 

• Weak links play another super-important 
structural role in graph theory 

– They bridge neighbourhoods 



Local Bridges 
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Local Bridge Property 

“If a node A in a network satisfies the Strong 
Triadic Closure Property and is involved in at 
least two strong relationships, then any local 
bridge it is involved in must be a weak 
relationship.” 
 
[Easley and Kleinberg] 

 

 



University Karate Club 



Graph Partitioning 

• (NP) Hard problem 

– Recursively remove the spanning links between 
dense regions 

– Or recursively merge nodes into ever larger 
“subgraph” nodes 

– Choose your algorithm carefully – some are better 
than others for a given domain 

• Can use to (almost exactly) predict the 
break up of the karate club! 

 

 



University Karate Clubs 
(predicted by Graph Theory) 
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University Karate Clubs 
(what actually happened!) 





Cypher 

• Declarative graph pattern matching language 

– “SQL for graphs” 

– A humane tool pioneered by a tamed SQL DBA 

• A pattern graph matching language 

– Find me stuff like… 
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Flatten the graph 

(d)-[:BOUGHT]->()-[:MEMBER_OF]->(n) 

(d)-[:BOUGHT]->()-[:MEMBER_OF]->(b) 

 

 

 

(d)-[:BOUGHT]->()-[:MEMBER_OF]->(c) 



Include any labels 

(d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category) 

(d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category) 

 

 

 

(d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(c:Category) 



Add a MATCH clause 

MATCH (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category), 

      (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category) 



Constrain the Pattern 

MATCH (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category), 

      (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category), 

      (c:Category) 

 

WHERE NOT((d)-[:BOUGHT]->()-[:MEMBER_OF]->(c)) 



Add property constraints 

MATCH (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category), 

      (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category), 

      (c:Category) 

 

WHERE n.category = "nappies" AND 

      b.category = "beer" AND 

      c.category = "console" AND 

      NOT((d)-[:BOUGHT]->()-[:MEMBER_OF]->(c)) 



Profit! 

MATCH (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(n:Category), 

      (d:Person)-[:BOUGHT]->()-[:MEMBER_OF]->(b:Category), 

      (c:Category) 

 

WHERE n.category = "nappies" AND 

      b.category = "beer" AND 

      c.category = "console" AND 

      NOT((d)-[:BOUGHT]->()-[:MEMBER_OF]->(c)) 

 

RETURN DISTINCT d AS daddy 



Results 

==> +---------------------------------------------+ 

==> | daddy                                       | 

==> +---------------------------------------------+ 

==> | Node[15]{name:"Rory Williams",dob:19880121} | 

==> +---------------------------------------------+ 

==> 1 row 

==> 0 ms 

==>  

neo4j-sh (0)$  





Facebook Graph Search 

Which sushi restaurants in 
NYC do my friends like? 

See http://maxdemarzi.com/ 



Graph Structure 



Cypher query is easy! 

MATCH (me) 

        -[:IS_FRIEND_OF]->() 

        -[:LIKES]->(restaurant) 

        -[:LOCATED_IN]->(city), 

       (restaurant)-[:SERVES]->(cuisine) 

 

WHERE me.name = 'Jim' AND 

      city.location='New York' AND 

      cuisine.cuisine='Sushi' 

 

RETURN restaurant 



And richer with labels 

MATCH (me:Person) 

        -[:IS_FRIEND_OF]->(:Person) 

        -[:LIKES]->(restaurant:Restaurant) 

        -[:LOCATED_IN]->(city:Place), 

       (restaurant)-[:SERVES]->(cuisine:Cuisine) 

 

WHERE me.name = 'Jim' AND 

      city.location='New York' AND 

      cuisine.cuisine='Sushi' 

 

RETURN restaurant 



And clearer with compact MATCH… 

MATCH (:Person {name: 'Jim'}) 

  -[:IS_FRIEND_OF]->(:Person) 

  -[:LIKES]->(restaurant:Restaurant) 

  -[:LOCATED_IN]->(:Place {location: 'New York'}), 

  (restaurant)-[:SERVES]->(:Cuisine {cuisine: 'Sushi'}) 

 

RETURN restaurant 



Search structure 





What’s Neo4j good for? 

• Data centre management 
• Supply chain/provenance 
• Recommendations 
• Business intelligence 
• Social computing 
• MDM 
• Web of things 
• Time series/event data 
• Product/engineering catalogue 
• Web analytics, user journeys 
• Scientific computing 
• Spatial 
• Geo/Seismic/Meteorological 
• Bio/Pharma 
• And many, many more… 



credit: @markhneedham 



Free O’Reilly book! 

Free Full eBook version: 
http://graphdatabases.com 

for the eBook version 



Don’t forget the Neo4j 
Stockholm Meetups! 



Thanks for listening 
@jimwebber 


