
Efficient HTTP Apis
A walk through http/2 via okhttp

Tuesday, February 4, 14

introduction

hello http api!

uh oh.. scale!

hello http/2!

wrapping up

Tuesday, February 4, 14

introduction

hello http api!

uh oh.. scale!

hello http/2!

wrapping up

Tuesday, February 4, 14

adrian
• engineer at Square	

• founded apache jclouds
• focus on (small) libraries

* Can be blamed for the http/2 defects in okhttp!

Tuesday, February 4, 14

okhttp
• HttpURLConnection compatible
• designed for java and android
• BDFL: Jesse Wilson from square

https://github.com/square/okhttp

Tuesday, February 4, 14

https://github.com/square/okhttp
https://github.com/square/okhttp

introduction

hello http api!

uh oh.. scale!

hello http/2!

wrapping up

Tuesday, February 4, 14

$ curl https://apihost/things \
-H ‘SecurityToken: b08c85073c1a2d02’ \
-H ‘Accept: application/json’
[
 {

 "id": 1,

 "owner_id": 0,

 "name": "Able"

 },

...
 {

 "id": 26,

 "owner_id": 0,

 "name": "Zest"

 }

]

$ curl https://apihost/things/2 \
-H ‘SecurityToken: b08c85073c1a2d02’ \
-H ‘Accept: application/json’
{
 "id": 2,

 "owner_id": 0,

 "name": "Beatific"

}

$ curl -X POST https://apihost/things \
-H ‘SecurityToken: b08c85073c1a2d02’ \
-H ‘Content-Type: application/json’ -d
’{
 "name": "Open-minded"

}’

$ curl -X DELETE https://apihost/things/2 \
-H ‘SecurityToken: b08c85073c1a2d02’

json apis are so simple

Tuesday, February 4, 14

https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things

$ curl https://apihost/things \
-H ‘SecurityToken: b08c85073c1a2d02’ \
-H ‘Accept: application/json’
[
 {

 "id": 1,

 "owner_id": 0,

 "name": "Able"

 },

...
 {

 "id": 26,

 "owner_id": 0,

 "name": "Zest"

 }

]

$ curl https://apihost/things/2 \
-H ‘SecurityToken: b08c85073c1a2d02’ \
-H ‘Accept: application/json’
{
 "id": 2,

 "owner_id": 0,

 "name": "Beatific"

}

$ curl -X POST https://apihost/things \
-H ‘SecurityToken: b08c85073c1a2d02’ \
-H ‘Content-Type: application/json’ -d
’{ "name": "Open-minded" }’

$ curl -X DELETE https://apihost/things/2 \
-H ‘SecurityToken: b08c85073c1a2d02’

so many bytes?!

1642!

Tuesday, February 4, 14

https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things

$ curl --compress https://apihost/things \
-H ‘SecurityToken: b08c85073c1a2d02’ \
-H ‘Accept: application/json’
-H ‘Accept-Encoding: gzip’
[

 {

 "id": 1,

 "owner_id": 0,

 "name": "Able"

 },
...

 {

 "id": 26,

 "owner_id": 0,

 "name": "Zest"

 }
]

$ curl https://apihost/things/2 \
-H ‘SecurityToken: b08c85073c1a2d02’ \
-H ‘Accept: application/json’
{
 "id": 2,

 "owner_id": 0,

 "name": "Beatific"

}

$ curl -X POST https://apihost/things \
-H ‘SecurityToken: b08c85073c1a2d02’ \
-H ‘Content-Type: application/json’ -d
’{ "name": "Open-minded" }’

$ curl -X DELETE https://apihost/things/2 \
-H ‘SecurityToken: b08c85073c1a2d02’

now with gzip

318

Tuesday, February 4, 14

https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things

java + gson
url = new URL(“https://apihost/things”);

connection = (HttpURLConnection) url.openConnection();

connection.setRequestProperty(“SecurityToken”, “b08c85073c1a2d02”);

connection.setRequestProperty(“Accept”, “application/json”);

connection.setRequestProperty(“Accept-Encoding”, “gzip”);

is = connection.getInputStream();

isr = new InputStreamReader(new GZIPInputStream(is));

things = new Gson().fromJson(isr, new TypeToken<List<Thing>>(){});

Tuesday, February 4, 14

https://superstuff/things
https://superstuff/things

okhttp + gson
client = new OkHttpClient();

url = new URL(“https://apihost/things”);

connection = client.open(url);

connection.setRequestProperty(“SecurityToken”, “b08c85073c1a2d02”);

connection.setRequestProperty(“Accept”, “application/json”);

connection.setRequestProperty(“Accept-Encoding”, “gzip”);

is = connection.getInputStream();

isr = new InputStreamReader(is); // automatic gunzip

things = new Gson().fromJson(isr, new TypeToken<List<Thing>>(){});

• OkHttp has its own api, but
for portability, use
java.net.HttpUrlConnection!

Tuesday, February 4, 14

https://superstuff/things
https://superstuff/things

We won!

• List body reduced from 1642 to 318 bytes!

• We saved some lines using OkHttp

• Concession: cpu for compression, curl is a
little verbose.

Tuesday, February 4, 14

introduction

hello http api!

uh oh.. scale!

hello http/2!

wrapping up

Tuesday, February 4, 14

Hey.. List #1 is slow!

368!

Tuesday, February 4, 14

Ask Ilya why!

• TCP connections need 3-
way handshake.

• TLS requires up to 2
more round-trips.

• Read High Performance
Browser Networking

http://chimera.labs.oreilly.com/books/1230000000545
Tuesday, February 4, 14

http://chimera.labs.oreilly.com/books/1230000000545
http://chimera.labs.oreilly.com/books/1230000000545

HttpUrlConnection

• http.keepAlive - should connections should
be pooled at all? Default is true.

• http.maxConnections - maximum number
of idle connections to each host in the pool.
Default is 5.

• get[Input|Error]Stream().close() -
recycles the connection, if fully read.

• disconnect() - removes the connection.

Tuesday, February 4, 14

Don’t forget to read!
...

is = tryGetInputStream(connection);

isr = new InputStreamReader(is);

things = new Gson().fromJson(isr, new TypeToken<List<Thing>>(){});

...

InputStream tryGetInputStream(HttpUrlConnection connection)

 throws IOException {

try {

 return connection.getInputStream();

} catch (IOException e) {

 InputStream err = connection.getErrorStream();

 while (in.read() != -1); // skip

 err.close();

 throw e;

}

Tuesday, February 4, 14

We won!

• Recycled socket requests are much faster
and have less impact on the server.

• Concessions: must read responses,
concurrency is still bounded by sockets.

Tuesday, February 4, 14

Let’s make List #2 free

Cache-Control: private, max-age=60, s-maxage=0
Vary: SecurityToken

Step 1: add a little magic to your server response

Step 2: make sure you are using a cache!

client.setOkResponseCache(new HttpResponseCache(dir, 10_MB));
...
connection.setDefaultUseCaches(true);

Step 3: pray your developers don’t get clever
// TODO: stupid server sends stale data without this
connection = new URLConnection(”https://apihost/things?time=”
+ currentTimeMillis());

Tuesday, February 4, 14

https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things
https://superstuff/things

We won again!

• No time or bandwidth used for cached
responses

• No application-specific cache bugs code.

• Concessions: only supports “safe
methods”, caching needs to be tuned.

Tuesday, February 4, 14

introduction

hello http api!

uh oh.. scale!

hello http/2!

wrapping up

Tuesday, February 4, 14

http/1.1
• rfc2616 - June 1999
• text-based framing
• defined semantics of the web
• head-of-line blocking

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Tuesday, February 4, 14

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

spdy/3.1

http://www.chromium.org/spdy/spdy-protocol/spdy-
protocol-draft3-1

• google - Sep 2013
• binary framing
• retains http/1.1 semantics
• concurrent multiplexed streams

Tuesday, February 4, 14

http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1

http/2

https://github.com/http2/http2-spec

• ietf draft 09 - Dec 2013
• binary framing
• retains http/1.1 semantics
• concurrent multiplexed streams

Tuesday, February 4, 14

http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1

 multiplexing

header compression

flow control

priority

server push

http/2 headline features

Tuesday, February 4, 14

 multiplexing

priority

flow control

header compression

server push

http/2 headline features

Tuesday, February 4, 14

Looking at the whole
message

• Request: request line, headers, and body

• Response: status line, headers, and body

Tuesday, February 4, 14

http/1.1 round-trip

GZIPPED DATA

Content-Length: 318

Cache-Control: private, max-age=60,
s-maxage=0

Vary: SecurityToken

Date: Sun, 02 Feb 2014 20:30:38 GMT

Content-Type: application/json

Content-Encoding: gzip

Host: apihost

SecurityToken: b08c85073c1a2d02

Accept: application/json

Accept-Encoding: gzip

GET /things HTTP/1.1

HTTP/1.1 200 OK

Tuesday, February 4, 14

http/2 round-trip

GZIPPED DATA

:status: 200

content-length: 318

cache-control: private, max-age=60,
s-maxage=0

vary: SecurityToken

date: Sun, 02 Feb 2014 20:30:38 GMT

content-type: application/json

content-encoding: gzip

:method: GET

:authority: apihost

:path: /things

securitytoken: b08c85073c1a2d02

accept: application/json

accept-encoding: gzip

HEADERS

Stream: 3

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS

DATA

Stream: 3

Flags: END_STREAM

Tuesday, February 4, 14

interleaving

HEADERS

Stream: 5

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS

DATA

Stream: 5

Flags:

DATA

Stream: 5

Flags: END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 5

Flags: END_HEADERS

DATA

Stream: 3

Flags: END_STREAM

Tuesday, February 4, 14

Canceling a Stream

HEADERS

Stream: 5

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS

DATA

Stream: 5

Flags:

HEADERS

Stream: 3

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 5

Flags: END_HEADERS

DATA

Stream: 3

Flags: END_STREAM

RST_STREAM

Stream: 5

ErrorCode: CANCEL

Tuesday, February 4, 14

control frames

HEADERS

Stream: 5

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS

DATA

Stream: 5

Flags:

DATA

Stream: 3

Flags: END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 5

Flags: END_HEADERS

SETTINGS

Stream: 0

Flags: ACK

SETTINGS

Stream: 0

Flags:

DATA

Stream: 5

Flags: END_STREAMTuesday, February 4, 14

OkHttp/2 Architecture

Frame
Reader
Thread

Frame
Writer
Lock

Control
Frame
Queue

Tuesday, February 4, 14

 multiplexing

priority

flow control

header compression

server push

http/2 headline features

Tuesday, February 4, 14

priority

HEADERS

Stream: 5

Flags: END_HEADERS, END_STREAM

Priority: 0

HEADERS

Stream: 3

Flags: END_HEADERS

DATA

Stream: 5

Flags:

DATA

Stream: 3

Flags: END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 5

Flags: END_HEADERS

DATA

Stream: 5

Flags: END_STREAM

• Priority: this stream is more
(lower number) or less
(higher number) important.

data might be sent earlier

Tuesday, February 4, 14

 multiplexing

priority

flow control

header compression

server push

http/2 headline features

Tuesday, February 4, 14

flow control

DATA

Stream: 3

Flags:

HEADERS

Stream: 3

Flags: END_HEADERS

WINDOW_UPDATE

Stream: 3

Increment: 8192you can send 8k more data

DATA

Stream: 3

Flags: END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS

• flow control: send up to the
lesser of stream window and
connection window (stream 0)

Tuesday, February 4, 14

 multiplexing

priority

flow control

header compression

server push

http/2 headline features

Tuesday, February 4, 14

http/1.1 headers

GZIPPED DATA

Content-Length: 318

Cache-Control: private, max-age=60,
s-maxage=0

Vary: SecurityToken

Date: Sun, 02 Feb 2014 20:30:38 GMT

Content-Type: application/json

Content-Encoding: gzip

Host: apihost

SecurityToken: b08c85073c1a2d02

Accept: application/json

Accept-Encoding: gzip

GET /things HTTP/1.1

HTTP/1.1 200 OK

159!

195!

318

• You can gzip
data, but not
headers!

Tuesday, February 4, 14

header compression

GZIPPED DATA

:status: 200

content-length: 318

cache-control: private, max-age=60,
s-maxage=0

vary: SecurityToken

date: Sun, 02 Feb 2014 20:30:38 GMT

content-type: application/json

content-encoding: gzip

:method: GET

:authority: apihost

:path: /things

securitytoken: b08c85073c1a2d02

accept: application/json

accept-encoding: gzip

HEADERS

Stream: 3

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS

DATA

Stream: 3

Flags: END_STREAM

8 bytes

57 bytes compressed

8 bytes

87 bytes compressed

• 168 byte
overhead
instead of 354

8 bytes

Tuesday, February 4, 14

reference tracking

UNZIPPED DATA

:status: 200

content-length: 53

cache-control: private, max-age=60,
s-maxage=0

vary: SecurityToken

date: Sun, 02 Feb 2014 20:30:38 GMT

content-type: application/json

:method: GET

:authority: apihost

:path: /things/2

securitytoken: b08c85073c1a2d02

accept: application/json

HEADERS

Stream: 3

Flags: END_HEADERS, END_STREAM

HEADERS

Stream: 3

Flags: END_HEADERS

DATA

Stream: 3

Flags: END_STREAM

8 bytes

9 bytes difference

8 bytes

6 bytes difference

• 39 byte
overhead
instead of 310

8 bytes

Tuesday, February 4, 14

hpack

http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-05

• ietf draft 05 - Dec 2013
• static reference table
• reference tracking
• huffman encoding

Tuesday, February 4, 14

http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-05
http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-05

 multiplexing

priority

flow control

header compression

server push

http/2 headline features

Tuesday, February 4, 14

push promise
:method: GET

:path: /things

...

HEADERS

Stream: 3

HEADERS

Stream: 3

DATA

Stream: 4

:method: GET

:path: /users/0

...

PUSH_PROMISE

Stream: 3

Promised-Stream: 4

HEADERS

Stream: 4

push
response
goes into

cache

DATA

Stream: 3

• Server guesses a
future request or
invalidating a
cached resource

Tuesday, February 4, 14

okhttp + http/2
• OkHttp 2.0 supports http/2
on ssl connections.

• Works out of the box on
Android.

• For Java, add jetty’s NPN
to your bootclasspath.

•

java -Xbootclasspath/p:/path/to/npn-boot-8.1.2.v20120308.jar ...

Tuesday, February 4, 14

https://superstuff/things
https://superstuff/things

We won!

• 1 socket for 100+ concurrent streams.

• Advanced features like flow control,
cancellation and cache push.

• Dramatically less header overhead.

Tuesday, February 4, 14

Getting started
• Connect to twitter or use
OkHttp’s MockWebServer.

• Note: OkHttp does not yet
implement cache push or
enforce priority settings.

https://github.com/square/okhttp

Tuesday, February 4, 14

http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-05
http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-05

introduction

hello http api!

uh oh.. scale!

hello http/2!

wrapping up

Tuesday, February 4, 14

Engage!

• Implement http/2 in JVM web containers.

• Spread the word and get involved in http/2.

• Work on OkHttp with us!

https://github.com/square/okhttp

https://github.com/http2/http2-spec/wiki/Implementations

Tuesday, February 4, 14

http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-05
http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-05
http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-05
http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-05

Thank you!

squareup.com/careers
corner.squareup.com

github square/okhttp
@adrianfcole

Tuesday, February 4, 14

