Chris Richardson

Author of POJOs in-Action

Founder of the original CloudFoundry.com

» @crichardson

chris@chrisrichardson.net | JfOkus 2014

. i Stockholm Wat ~-*ront Conferq j\ce Centre, February 3-5
http://plainoldobjects.com

Presentation goal

Learn how to use (Scala)

Futures and RBX
Observables to write simple
vet robust and scalable
concurrent code

About Chris

COMMUNICATIONS

Developing Enterprise Applications with Lightweight Frame

0J0Os
INACTION

ADPTING
10 THE
ENVIRONMENT

(hris Richardson

OFTHEACM

Forgot password?

| vowwenee « |[Features v [inFormaTION +

YSTEM ALERT. PLEASE READ: Cloud Foundry will be moving to a new URL.

CLOUD

APPLICATION DEMO
SIGN UP LEARN MORE Deploying Web Applications To Amazon EC2
with Cloud Foundry

@crichardson

About Chris

= Founder of a buzzword compliant (stealthy, social, mobile,
big data, machine learning; ...) startup

» Consultant helping organizations improve how they
architect and deploy-applications using cloud, micro
services, polyglot applications, NoSQL, ...

@crichardson

Agenda

= [he need for concurrency
= Simplifying concurrent code with Futures

» Consuming asynchronous streams with Reactive
Extensions

@crichardson

Let's Imagine you are bullding

an online store

amazon Crris's Amazom.com Today's Deals Gt Cards Sell Heip @4 -School § "~ >shop

> : . . Hedlo, Your Vidsh
Dopartment « Search Books v pojos in action u Your Account~ Prime v x..lc:m- List ~

Sell Your Books Best Books

Books Agvanced Search New Releases Best S of the Month

ers The New York Tmes® &

Instant Order Update for Chris Richardson. You purchased this item on June 11, 2008. View this orcer.

POJOs in Actlon Developing Enterprise Applications with Lightweight Frameworks [Paperback] Buy New $34.53

Chris Richardson (A

< INSIDE!

ve: $10.42 (23%)

Only 1 left in stock (more on the way).
Ships from and sold by Amazon.com. Gft-wrap availadle

32 new from $2.99 33 used from $1.14

P O d U Ct : reoy EARN $5 FOR EACH FRIEND YOU REFER —

TO AMAZON STUDENT » sec deusits This wil ba a gift

| nfo ¢ \ expan view Add to Wish List

Shop the new tech.book(store)

New! Introducing the tech 2], @ hub for Software Developers and Architects, Netw er
technology professionals to find hg’\lv rated and highly-relevant career resources. Shop b read this
week's blog posts by authors and thought-leaders in the tech industry. > Shop now ULl
65 used & new frem $1.14
At Have cnc to sell? | Sellon Amazon
Book Description Tell the Publisher!
P January 30, 2006 10: 1932394583 | [SEN-13: 978-1932394580 | Ednion: 1 I
The standard platform for enterprise application development has been EJB but the difficulties of working with it caused it to become u to lightweight Don't have a Kindle?
technologies such as Hibernate, Spring, JDO, IBATIS and others, all of which allow the developer to work directly with the simpler POJOs. Now EJB version 3 solves the problems Get your Kindle here,
that gave EJB 2 a black eye-it too works with POJOs. POJOs in Action cescribes the new, easier ways to cevelop enterprise Java applications. It cescribes how to make key design or downbad a FREE
cecisions when ceveloping business logic using POJOs, including how to organize and encapsulate the business logic, access the gatabase, manage transactions, and hancle catabase Kindle Reading App.

concurrency. This book is @ new-generation Java applications guide: it enables readers to successfully build lightweight applications that are easier to develop, test, and maintain.

'naroi-'n '50

Frequently Bought Together

Price for both: $72.99
P00
. - 9 Add both to Cart | | Add both to Wish List
') o
Show avadabilty and shipping details

¥ This item: POJOs in Action: Developing Enterprise Applications with Lightweight Frameworks by Chris Richardson Pape
¥ Java Persistence with Hibernate by Christian Bauer Paperback $38.46

Customers Who Bought This Item Also Bought Page 1 of 4

-~ 4 l‘ P
b X
- <
< Better, Faster, Lighter Beginning POJOs Bitter EJB Java Persistence with Expert One-on-One J2EE Hamessing Hibemate Cracking the Coding Java Soa Cookbook >
Java Lightweight Java Web 8ruce Tate Hibemate Development James Eliott nterview: 160 Eben Howit

Bruce A. Tate (13 Crvistian Bauver Rog Jonnson 22) akmann McDowe (18)

(31) (74) (30) Paperback (182) Paperback
$31.60 g X $26.75 $31.50

$38.46

Editorial Reviews

Review ardson

A solid, valuable ang casy-to-read work. -- Javaranch

UGt T 7Y T TOT

Chris Richargson is a developer, architect and mentor with over 20 years of exper|
Java become more productive and successful. Chris has been a technical leacer
of Cambricge in England. He lives in Oaklang, CA.

i cevelopment projects and helps teams that are frustrated with enterprise
Systems. Chris holgs @ MA & BA in Computer Science from the University

Product Details

Paperback: 456 pages
Publisher: Manning Publications; 1 edition (January 30, 2006) I nfo : ales

Language: Engish
ISBN-10: 1932354583 A
ISBN-13: 978-1932394580 ran kl n
Product Dimensions: 9.2 x 7.3 x 1.2 inches g
Shipping Weight: 2.5 pounds (View shioping rates and policies)
Average Customer Review: {31 customer reviews)
Amazon Best Sellers Rank: #926,633 in Books (See Top 100 in Booxs)

Did we miss any relevant features for this product? Tell us what we missed.

Woulg you like to update product info, give feedback on images, or tell us about a lower price?

”

Reviews

“1 like the INACTION s
E Har 4

31 customer reviews -

Got your POJO workin®

By Thing with a hoo

Format: Paperback

This book covers the use of several lightweight frameworks for developing enterprise applicatons. If you have no clue at all about the issues involved in enterprise Java, |
would not advise reading this yet. Despite being C#-based, Applying Domain-Driven Design and Patterns by Jimmy Nilsson would provide the gentie introduction required.
On the other hand, if you've had previous experience with server side programming, and want to be brought up to speed quickly on how POJO-based frameworks can be
used to replace EJB 2.x style development, this is right up your alley. If you've got used to computer books belying their dimensions with disappointingly little information,
you'll be pleasantly surprised with PiA - it's packed with good content

What's nice about this book is that it goes beyond the basics of the likes of Spring that most people have read several times akeady (e.g. explaining what dependency
injection is) and actually shows how it obviates the need to run in an EJB container and do JNDI look ups. You don't just get to read about, e.g. lazy and eager loading, the
author shows you how to use Hibernate and JDO to mplement those strategies. That said, this book is not a replacement for documentation or specialised references, so it
doesn't get too bogged down. Particularly helpful is that the author provides pros and cons for each of the different approaches he advocates, which helps put them into Most Recent Customer Reviews
perspective.

Advertsement L

useless book about pojos in
context of spring, ejb, hibernate and jdo
the book lightly covers the use of pojo in
spring. ejb. hibernate, and jco. the coverage of
each topic is like say 30-40%. Read more

The focus of the book is on using Object Relational Mapping toois, ether Hibernate or JDO, in combination with Spring's dependency injection and AOP-based interceptors
for transactions, There is also converage of the more procedural-based iIBATIS, and using EJB3, although the author does not seem to be a big fan of the latter, despite &
being an improvement on EJB2. Many of the persistence-related patterns in Martin Fowler's Patterns of Enterprise Application Architecture are covered here, including the
concurrency patterns like pessimistic and optimistic locking. The author shows how to implement these patterns with the frameworks, often showing multiple ways of doing
things. He's not afraid to highlight where one framework is lacking compared to another, which is refreshing.

Learned "Back-End Web

As you can perhaps tel, the coverage is predominantly devoted to the persistence layer - there's not much here on the presentation layer, although there is some material Programming” From This Book

on using serviets. If you're booking for lots of detail on how to hook your domain model up to, say, Struts, or one of the many other web frameworks, you won't find much This book is a rare find. It is completely

here. practical teaching you what you need to know
to use Spring and Hibernate (or JDO)

My only quibble with the book is that athough the author pushes increased testability as a important benefit of freeing onesef from EJB containers (a good thing) and uses Read more

JUnit tests to ilustrate how to develop a POJO-based application (another good thing), the tests use mock objects heavily. | hesitate to call that a bad thing, as clearly
there's a whole bunch of people who are much cleverer than | using them productively, but here there's so much set up and setting of expectations, that the actualtest is
hard to spot, and the intention difficult to fathom. Your mileage may of course vary. /'« Great practical resource

Despite the fact that £ was written a few years

If you're neither an enterprise dummy nor expect, | wholeheartedly recommend this excelient book. ago, itis no less valuable today in helping
develoners undersiand how 1o create an

INSIDF

Related
: _ - . DOOKS

Professional Java Expert One-on-One J2EE Better, Faster, Lighter Java by JAVA Programming With the
Development with the Spring Development without EJB by 3ruce Tate SAP Web Application Server
Framework by Rod Johnson Rod Jonnson PhD Discusses: by Karl Kessler

PnD Discusses: + domain moddl service Discusses:

Discusses: + datastore dentity + persistent domain model « default fotch group

+ persistent domain model +« mapped statement + mapped statement + deoleting persistent oblects
. e data access exceptions « fetch groups

Customers Viewing This Page May Be Interested in These Sponsored Links (wha

ths?)
In Action @ - Buy In Action On Sale Now - Orcer Tocay! www.interweavestore.com/
See 2 problem with these advertisements? Let us kno

Sell a Digital Version of This Book in the Kindle Store

If you are 2 publisher or author and hold the digital rights to 2 book, you can sell a digital version of it in our Kindle Store. Learn more
orur

There are no discussions about this product yet.
Bo the first to discuss this product with the community.

Start a Discussion

Look for Similar Items by Category

Books > Computers & Technology > Programming > Languages & Tools > Java

] [}
Books > Computers & Technology > Programming > Software Design, Testing & Engineering > Object-Orien Design Vler l
Books > Education & Reference

Books > New, Used & Rental Textbooks > Computer Science > Programming Languages

Feedback
» If you need help or have a question for Customer Service, contact us.

W,

» Would you like to update product info, give feedback on images, or tell us about a lower price?
» If you are a seller for this product and want to change product data, click here {you may have to sign in with your seller id)

at's this?)

Recently Viewed Items Continue Shopping: Customers Who Bought items in Yo
FONATHAN ALTER
Canon EF 70-200mm THE FIVE STAGES
D T 020 v oot
f/4 L 1S USM. OFLRATING
MANUA ¥ Toms

Samsung 840 Pro
Series... a
WD Velodraptor

[——

WD1000DHTZ 1TB.. Life's Operating Manua The Great Degeneration Blocd of the Liberals The Five Stages of The Center Holds: Obama
With How. George Packer Collapse and His
Shadyac Nial Ferg 8) Omitry O han Aker
#8 verbatim 240 G8 o e (&) e
SATA IIL.. Aokd: (51) : ricie's (74)
Hardcover o0 Paperback
$16.17 Prim Fix this recommendaticn $13.97
Fix this recommendation Fix this recommendation Fix ths recommendation Fix this commendation

+ Mobile apps

mil. ATET 2@ 10:24 AM ¥ 92% [mmp

POJOs in Action: Developing Enterprise
Applications with Lightweight
Frameworks
Chris Richardson (Paperback)
List Price: $44-95

Price: $34.53
You Save: $10.42 (23% off)

Compare 78 New & Used Offers
From $0.49

Cart Wish List

@crichardson

Application architecture

Desktop
brOWSGF Product Info Service

Front end server

Web Application

Mobile
Recomendation
browser - Service
AP| gateway

NEYE JSON

mOb”e Review Service
client

@crichardson

How does the client get product
details?

Product Info Service

getProductinfo()

Browser/ : FrOnt-end getRecommendatiorﬁ Recommendatlons
Client SV Service

getReviews|()

Review
Service

@crichardson

Product detalls - client-side
aggregation

Product Info Service

getProductinfo()
getProductInfo()

Browser/ getRecommendations§ FrOnt-end getRecommendatiorﬁ Recommendatlons
Client getReviews) SEIVEK Service

getReviews|()

Requires Review
good network Service

performance

@crichardson

Product detalls - server-side
aggregation

Product Info Service

getProductinfo()

getProductDetails() Front en d .
Browser/ > getecommendations) - Recommendations

Client Server Service

getReviews|()

Review

One roundtrip e
ervice

@crichardson

Product detalls - server-side
aggregation: sequentially

Product Info Service

getProductinfo()

A Front-end 9etRecommendations) Recommendations
— —

server Service

Review
Service

Higher response Eime :—(

@crichardson

Product details - server-side
aggregation: parallel

Product Info Service

getProductinfo()

Jetrotun et etRecommendations|) '
. Front-enad 9 _, Recommendations

server Service

Lower response Review
Finae :....) Service

@crichardson

Implementing a concurrent
REST client

» [hread-pool based approach
® cxecutorService.submit(new: Callable(...))

® Simpler but less scalable = lots of idle threads
consuming - memory.

= Event-driven approach
x NIO with completion callbacks

® More complex but more scalable

And. it must handle partial failures

@crichardson

Agenda

= [he need for concurrency
= Simplifying concurrent code with Futures

» Consuming asynchronous streams with Reactive
Extensions

@crichardson

Futures are a great

concurrency abstraction

http://en.wikipedia.org/wiki/Futures_and_promises

@crichardson

How futures work

initiates
. Asynchronous
operation

E

Outcome

Future

@crichardson

Benetits

x Simple way for two concurrent activities to communicate safely
= Abstraction:

x Client does not know:how:the asynchronous operation is
implemented

= Easy to implement scatter/gather:

x Scatter: Client can invoke multiple asynchronous operations
and gets a Future for each one.

x (Gather: Get values from the futures

@crichardson

Front-end server design: hanaling
GetProductDetails request

ProductDetailsController

getProductDetails()

l

ProductDetailsService

getProductDetails()

............................... S S N 5

ProductinfoService ReviewService RecommendationService

getProductInfo() getReviews() getRecommendations|)

s o]

RestTemplate

@crichardson

REST client using Spring @Async

trait ProductInfoService {
def getProductlInfo (productld: Long) :
java.util.concurrent.Future[ProductInfo]

@Component
class ProductInfoServiceImpl extends ProducInfoService {

val restTemplate : RestTemplate = ... Execute

asynchronously in

@Async thread pool
def getProductInfo(productId: Long) = {

new AsyncResult (restTemplate.getForObject(....)...)

A fulfilled Future

ProductDetailsService

@Component
class ProductDetailsService
@Autowired () (productInfoService: ProductInfoService,
reviewService: ReviewService,

recommendationService: RecommendationService) {

def getProductDetails (productId: Long) : ProductDetails = {
val

productInfoFuture = productInfoService.getProductInfo (productlId)
val recommendationsFuture =

recommendationService.getRecommendations (productId)
val reviewsFuture = reviewService.getReviews (productId)

val productInfo = productInfoFuture.get (300, TimeUnit.MILLISECONDS)
val recommendations =

recommendationsFuture.get (10, TimeUnit.MILLISECONDS)
val reviews = reviewsFuture.get (10, TimeUnit.MILLISECONDS)

ProductDetails (productInfo, recommendations, reviews)

@crichardson

ProductController

@Controller
class ProductController
@Autowired () (productDetailsService : ProductDetailsService)

@RequestMapping (Array (" /productdetails/{productId}"))

@ResponseBody

def productDetails (@PathVariable productId: Long) =
productDetailsService.getProductDetails (productId)

@crichardson

Not bad but...

class ProductDetailsService
def getProductDetails (productld: Long): ProductDetails = {

val productInfo =
productInfoFuture.get (300, TimeUnit.MILLISECONDS)

Gathering blocks Tomcat

Nobk so scalable :=(thread until all Futures
complete

@crichardson

... and also...

= Java Futures work well for a single-level of asynchronous
execution

BUT

= {#fall for more complex, scalable scenarios

= Difficult to compose and coordinate multiple concurrent
operations

= See this blog post for more detalls:
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html

@crichardson

Better: Futures with callbacks
= NO blocking!

def asyncSquare(x : Int)

: Future[Int] = ... x * x...

Partial function applied to
successful outcome

val £ = asyncSquare (25)
f onSuccess {

case x : Int => println(x)
} Applied to failed outcome
f onFailure {

case e : Exception => println("exception thrown")

Guava ListenableFutures, Spring 4 ListenableFuture
Java 8 CompletableFuture, Scala Futures @crichardson

Sut

callback-based scatter/gather

—

Messy, tangled code
(aka. callback hell)

Composable futures hide the mess

Combines two futures

val fzip = asyncSquare(5) zip asyncSquare(7)
assertEquals ((25, 49), Await.result(fzip, 1 second))

val fseq = Future.sequence((l to 5) .map { x =>
asyncSquare (x)

}) Transforms list of futures to a future

assertEquals (List(1, 4, 9, 16, 25),
Await.result (fseq, 1 second))

Scala, Java 8 CompletableFuture (partially)

@crichardson

ZIp() IS asynchronous

OutcomeT

.

B=fzp

-

Outcome?2

f2

Impi&meméed using callbacles

@crichardson

Transforming futures

def asyncPlus(x : Int, y : Int) = ... x +y ...
val future2 = asyncPlus(4, 5) map{ * 3 }

assertEquals (27, Await.result(future2, 1 second))

Asynchronously transforms
future

Scala, Java 8 CompletableFuture (partially)

@crichardson

Chaining asynchronous operations

Calls asyncSquare() with the eventual
outcome of asyncPlus|()

val £f2 = asyncPlus (5, 8) .flatMap { x => asyncSquare (x) }

assertEquals (169, Await.result(f2, 1 second))

Scala, Java 8 CompletableFuture (partially)

@crichardson

Scala futures are Monads

Two calls execute in parallel

(asyncPlus (3, 5) zip asyncSquare(5))
.flatMap ({
case (a, b) =>

And then invokes asyncPlus()

asyncPlus(a, b) map { * 2 }

result onSuccess {

Rewrite using “%or’

@crichardson

Scala futures are Monads

Two calls execute in parallel

val result = for {
(a, b) <- asyncPlus (3, 5) zip asyncSquare (5)
c <- asyncPlus(a, b)

} yield ¢ * 2

And then invokes
result onSuccess { asyncPlus()

‘for! is shorthand for
mop() and {LO&MQP()

@crichardson

ProductinfoService: using
Scala Futures

import scala.concurrent.Future
Scala Future

@Component
class ProductInfoService {

def getProductInfo (productlId: Long): Future[ProductInfo]

Future { restTemplate.getForObject(....) 1}
}

Executed in a threaded pool

@crichardson

ProductDetallsService: using
Scala Futures

class ProductDetailsService

Return a Scala Future

def getProductDetails (productlId: Long) : Future[ProductDetails] = {
val productInfoFuture = productInfoService.getProductInfo (productId)
val recommendationsFuture =
recommendationService.getRecommendations (productId)
val reviewsFuture = reviewService.getReviews (productId)

for (((productInfo, recommendations) ,6 reviews) <-
productInfoFuture zip recommendationsFuture zip reviewsFuture)
yield ProductDetails (productInfo, recommendations, reviews)

Gathers data without blocking

@crichardson

Async ProductController: using
Spring MVC DeferredResult

@Controller Spring MVC
class ProductController ... DeferredResult

=

@RequestMapping (Array (" /productdetails/{productId}"))
Future
@ResponseBody
def productDetails (@PathVariable productId: Long)
: DeferredResult[ProductDetails] =
val productDetails =
productDetailsService.getProductDetails (productId)

val result = new DeferredResult[ProductDetails]

productDetails onSuccess ({

case r => result.setResult(r)
} Convert Scala Future
productDetails onFailure ({ 10

case t => result.setErrorResult (t) DeferredResult

}

result
@crichardson

Servlet layer Is asynchronous
BUT
the backend uses thread

DOO0IS
—

Need event-driven REST
client

@crichardson

Spring AsyncRest lemplate

New in Spring 4
Mirrors Restlemplate
Can use HttpGomponents NIO-based AsyncHttpClient

Methods return a ListenableFuture

Yet another

x JDK 7 Future + callback methods 7 -
Future”!

@crichardson

ProductinfoService: using the

AsyncRest lemplate

class ProductInfoService {
val asyncRestTemplate = new AsyncRestTemplate (
new HttpComponentsAsyncClientHttpRequestFactory())

override def getProductlInfo(productId: Long) = {
val listenableFuture =
asyncRestTemplate.getForEntity (" {baseUrl}/productinfo/{productlid}",
classOf [ProductInfo],
baseUrl, productId)

toScalaFuture (listenableFuture) .map { .getBody }

Convert to Scala Future and get entity

hiip://hc.apache.org/nitpcomponenis-asyncciient-dev/ @crichardson

Converting ListenableFuture to
Scala Future

def toScalaFuture|[T] (1f : ListenableFuture[T])
Future[T] = {

val p = promise[T] () Creates a promise = producer AP

1f.addCallback (new ListenableFutureCallback[T] {
def onSuccess (result: T) { p.success (result)}
def onFailure(t: Throwable) { p.failure(t) }

1)
p.future

Propagate outcome to promise

Return future

@crichardson

Now everytning 1S non-

blocking :-)

We have achieved scaling Nirvana

WT*#*# Is my code doing?

= Operations initiated in one thread but fail in-another
® | ack of a full stack trace can'make debugging difficult
® |nherent problem of async/event driven programming

» Futures make it very:-easy to forget to handle errors

x someFuture.foreach { handleTheHappyPath }

= Erroris quietly ignored: similar to an empty catch {}
block

@crichardson

Agenda

= [he need for concurrency
= Simplifying concurrent code with Futures

» Consuming asynchronous streams with Reactive
Extensions

@crichardson

Let’s Imagine you have a
stream of trades

and
you need to calculate the 15
minute rolling average price of
each stock

Where Is the high-level

abstraction that simplifies
solving this problem

FuturellList|T]]

Not applicable to infinite
streams

Pipes and Eilters
e.g. Spring Integration
|

Complex event processing (CEP)

Not bad but tends ko be an exbternal DSL,
heavy weight, sE&R&aLLv defined, ..

@crichardson

Introducing Reactive
Extensions (Bx)

The Reactive Extensions (Bx):is a liorary for composing
asynchronous -and event-based programs using
observable seqguences and LINQ-style query operators.
Using Rx, developers represent asynchronous data
streams with Observables , query asynchronous

data streams using LINQ operators , and

hitps://rx.codeplex.com/

@crichardson

About RxJava

NETFLIX

Reactive Extensions (Rx) for the JVM

Original- motivation for:Netflix-was 1o provide rich Futures

Implemented in Java

Adaptors for Scala, Groovy and CGlojure

https://github.com/Netflix/BxJava

@crichardson

RxJava core concepts

An asynchronous
stream of items

trait Observable[T] {
def subscribe (observer : Observer|[T]) : Subscription

Notifies

trait Observer[T] {
def onNext (value : T) Used to
def onCompleted () unsubscribe
def onError (e : Throwable)

}

@crichardson

Comparing Observable to...

= Observer pattern - similar-but adds
® Observer.onComplete()
= Observer.onkrror()

= [terator pattern = mirror image
» Push rather than pull

= Future - similar but

= Represents a stream of multiple values

@crichardson

SO what?

Fun with observables

val oneltem = Observable.items(-1L)
val every10Seconds = Observable.interval(10 seconds)

val ticker = oneltem ++ every10Seconds

val subscription = ticker.subscribe (new Observer|{L.ong] {
override def onNext(value: Long) ={ printin(*value=" + value) }

})

subscription.unsubscribe()
-1 O

t=0

@crichardson

Creating observables

Observable.create({ observer: Observer|[T] =>

= Function
observer.onNexi(...) called when

Observer
observer.onGCompleted() subscribes

observer.onError(...)

Subscription{ ... }
}

) Called when observer
unsubscribes

@crichardson

Creating observables from
Scala Futures Query AWS

def getTableStatus(tableName: String) = {
val future = dynamoDbClient.describeTable(new Describe TableReqguest(tableName))

Observable.create({ observer.onNext: Observer[DynamobDbStatus| =>
future.onComplete {
case Success(response) =>
observer.onNext(DynamoDbStatus(response.get Table.get TableStatus))
observer.onCompleted|)

case Failure(t: ResourceNotFoundException) =>
observer.onNext(DynamoDbStatus(*NOT_FOUND"))
observer.onCompleted()

case Failure(somekrror) =>
observer.onError(somekError)

}
Subscription({})

)
}

Propagate outcome

Transforming observables

val tableStatus = ticker.flatMap { i =>
logger.info(*{}th describe table”, 1 + 1)
getlableStatus(name)

}

Status1 Status? Status3

t=0 t=10 =20

+ Usual collection methods: map(), filker(), take(), drcap(),

@crichardson

Back to the stream of [rades

averaging example...

Calculating averages

class AverageTradePriceCalculator {

def calculateAverages (trades: Observable[Trade]) :
Observable[AveragePrice] {

}

case class Trade(case class AveragePrice (
symbol : String, symbol : String,
price : Double, price : Double,

)

@crichardson

Using groupBy()

Observable[Trade]

APPL : 401 IBM : 405 CAT : 405 APPL: 403

groupBy((trade) => trade.symbol)

APPL : 401 APPL: 403

IBM : 405

CAT : 405

Observable[GroupedObservable[String, Trade]] ,
@crichardson

Using window()

Observable[Trade]
APPL : 401 APPL 405 APPL 405

window(. ..)

5 minutes

A
>

APPL : 401 APPL 405 APPL 405

JUSECS APPL 405 APPL:405 APPL: 403

SUSeCS APPL : 405

<
<

Observable[Observable[Trade]] @crichardson

Using foldLeft()

Observable[Trade]

APPL : 402 APPL :405 APPL: 405

foldLeft(0.0)(+ .price)
/- length

APPL : 4006

Observable[AveragePrice] Singleton

@crichardson

Using flatten()

Observable[Observable[AveragePrice]]

APPL : 401 APPL: 403

IBM : 405

CAT : 405

flatten()

APPL : 401 IBM : 405 CAT : 405 APPL: 403

Observable[AveragePrice] Qcrichard
crichardson

Calculating average prices

def calculateAverages (trades: Observable[Trade]) : Observable|[AveragePrice] =

trades.groupBy(.symbol) .map { symbolAndTrades =>
val (symbol, tradesForSymbol) = symbolAndTrades

val openingEverySecond =
Observable.items (-1L) ++ Observable.interwval (1 seconds)

def closingAfterSixSeconds (opening: Any) =
Observable.interval (6 seconds) .take (1)

tradesForSymbol .window (.. .) .map {
windowOfTradesForSymbol =>
windowOfTradesForSymbol.fold((0.0, 0, List[Double]())) { (soFar, trade)

val (sum, count, prices) = soFar
(sum + trade.price, count + 1, trade.price +: prices)
} map { x =>
val (sum, length, prices) = x
AveragePrice (symbol, sum / length, prices)
}
}.flatten
} .flatten

@crichardson

Summary

Consuming Web services asynchronously: is essential

Scala-style Futures are a powerful-concurrency abstraction

Rx Observables
® cven more powertul

® unifying albstraction for a wide variety of use cases

@crichardson

¥ @crichardson chris@chrisrichardson.net

uest|o ?‘

http: //p\alnoldobjots com

