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Learn how to use (Scala)

Futures and RBX
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About Chris

= Founder of a buzzword compliant (stealthy, social, mobile,
big data, machine learning; ...) startup

» Consultant helping organizations improve how they
architect and deploy-applications using cloud, micro
services, polyglot applications, NoSQL, ...
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Agenda

= [he need for concurrency
= Simplifying concurrent code with Futures

» Consuming asynchronous streams with Reactive
Extensions
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Let's Imagine you are bullding

an online store
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Application architecture

Desktop
brOWSGF Product Info Service

Front end server

Web Application

Mobile
Recomendation
browser - Service
AP| gateway

NEYE JSON

mOb”e Review Service
client
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How does the client get product
details?

Product Info Service

getProductinfo()

Browser/ : FrOnt-end getRecommendatiorﬁ Recommendatlons
Client SV Service

getReviews|()

Review
Service

@crichardson



Product detalls - client-side
aggregation

Product Info Service

getProductinfo()
getProductInfo()

Browser/ getRecommendations§ FrOnt-end getRecommendatiorﬁ Recommendatlons
Client getReviews)  SEIVEK Service

getReviews|()

Requires Review
good network Service

performance

@crichardson




Product detalls - server-side
aggregation

Product Info Service

getProductinfo()

getProductDetails() Front en d .
Browser/ > getecommendations) - Recommendations

Client Server Service

getReviews|()

Review

One roundtrip e
ervice

@crichardson




Product detalls - server-side
aggregation: sequentially

Product Info Service

getProductinfo()

A Front-end  9etRecommendations)  Recommendations
— —

server Service

Review
Service

Higher response Eime :—(

@crichardson



Product details - server-side
aggregation: parallel

Product Info Service

getProductinfo()

Jetrotun et etRecommendations|) '
. Front-enad 9 _, Recommendations

server Service

Lower response Review
Finae :....) Service
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Implementing a concurrent
REST client

» [hread-pool based approach
® cxecutorService.submit(new: Callable(...))

® Simpler but less scalable = lots of idle threads
consuming - memory.

= Event-driven approach
x NIO with completion callbacks

® More complex but more scalable

And. it must handle partial failures

@crichardson




Agenda

= [he need for concurrency
= Simplifying concurrent code with Futures

» Consuming asynchronous streams with Reactive
Extensions

@crichardson




Futures are a great

concurrency abstraction

http://en.wikipedia.org/wiki/Futures_and_promises

@crichardson



How futures work

initiates
. Asynchronous
operation

E

Outcome

Future

@crichardson



Benetits

x  Simple way for two concurrent activities to communicate safely
= Abstraction:

x Client does not know:how:the asynchronous operation is
implemented

= Easy to implement scatter/gather:

x Scatter: Client can invoke multiple asynchronous operations
and gets a Future for each one.

x  (Gather: Get values from the futures

@crichardson




Front-end server design: hanaling
GetProductDetails request

ProductDetailsController

getProductDetails()

l

ProductDetailsService

getProductDetails()

............................... S S N 5

ProductinfoService ReviewService RecommendationService

getProductInfo() getReviews() getRecommendations|)

s o ]

RestTemplate

@crichardson




REST client using Spring @Async

trait ProductInfoService {
def getProductlInfo (productld: Long) :
java.util.concurrent.Future[ProductInfo]

@Component
class ProductInfoServiceImpl extends ProducInfoService {

val restTemplate : RestTemplate = ... Execute

asynchronously in

@Async thread pool
def getProductInfo(productId: Long) = {

new AsyncResult (restTemplate.getForObject(....)...)

A fulfilled Future




ProductDetailsService

@Component
class ProductDetailsService
@Autowired () (productInfoService: ProductInfoService,
reviewService: ReviewService,

recommendationService: RecommendationService) {

def getProductDetails (productId: Long) : ProductDetails = {
val

productInfoFuture = productInfoService.getProductInfo (productlId)
val recommendationsFuture =

recommendationService.getRecommendations (productId)
val reviewsFuture = reviewService.getReviews (productId)

val productInfo = productInfoFuture.get (300, TimeUnit.MILLISECONDS)
val recommendations =

recommendationsFuture.get (10, TimeUnit.MILLISECONDS)
val reviews = reviewsFuture.get (10, TimeUnit.MILLISECONDS)

ProductDetails (productInfo, recommendations, reviews)

@crichardson




ProductController

@Controller
class ProductController
@Autowired () (productDetailsService : ProductDetailsService)

@RequestMapping (Array (" /productdetails/{productId}"))

@ResponseBody

def productDetails (@PathVariable productId: Long) =
productDetailsService.getProductDetails (productId)

@crichardson




Not bad but...

class ProductDetailsService
def getProductDetails (productld: Long): ProductDetails = {

val productInfo =
productInfoFuture.get (300, TimeUnit.MILLISECONDS)

Gathering blocks Tomcat

Nobk so scalable :=( thread until all Futures
complete

@crichardson




... and also...

= Java Futures work well for a single-level of asynchronous
execution

BUT

= {#fall for more complex, scalable scenarios

= Difficult to compose and coordinate multiple concurrent
operations

= See this blog post for more detalls:
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html

@crichardson




Better: Futures with callbacks
= NO blocking!

def asyncSquare(x : Int)

: Future[Int] = ... x * x...

Partial function applied to
successful outcome

val £ = asyncSquare (25)
f onSuccess {

case x : Int => println(x)
} Applied to failed outcome
f onFailure {

case e : Exception => println("exception thrown")

Guava ListenableFutures, Spring 4 ListenableFuture
Java 8 CompletableFuture, Scala Futures @crichardson




Sut

callback-based scatter/gather

—

Messy, tangled code
(aka. callback hell)




Composable futures hide the mess

Combines two futures

val fzip = asyncSquare(5) zip asyncSquare(7)
assertEquals ( (25, 49), Await.result(fzip, 1 second))

val fseq = Future.sequence((l to 5) .map { x =>
asyncSquare (x)

}) Transforms list of futures to a future

assertEquals (List(1, 4, 9, 16, 25),
Await.result (fseq, 1 second))

Scala, Java 8 CompletableFuture (partially)

@crichardson




ZIp() IS asynchronous

OutcomeT

.

B=fzp

-

Outcome?2

f2

Impi&meméed using callbacles
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Transforming futures

def asyncPlus(x : Int, y : Int) = ... x +y ...
val future2 = asyncPlus(4, 5) map{ * 3 }

assertEquals (27, Await.result(future2, 1 second))

Asynchronously transforms
future

Scala, Java 8 CompletableFuture (partially)

@crichardson




Chaining asynchronous operations

Calls asyncSquare() with the eventual
outcome of asyncPlus|()

val £f2 = asyncPlus (5, 8) .flatMap { x => asyncSquare (x) }

assertEquals (169, Await.result(f2, 1 second))

Scala, Java 8 CompletableFuture (partially)

@crichardson




Scala futures are Monads

Two calls execute in parallel

(asyncPlus (3, 5) zip asyncSquare(5))
.flatMap ({
case (a, b) =>

And then invokes asyncPlus()

asyncPlus(a, b) map { * 2 }

result onSuccess {

Rewrite using “%or’

@crichardson




Scala futures are Monads

Two calls execute in parallel

val result = for {
(a, b) <- asyncPlus (3, 5) zip asyncSquare (5)
c <- asyncPlus(a, b)

} yield ¢ * 2

And then invokes
result onSuccess { .. .. asyncPlus()

‘for! is shorthand for
mop() and {LO&MQP()

@crichardson




ProductinfoService: using
Scala Futures

import scala.concurrent.Future
Scala Future

@Component
class ProductInfoService {

def getProductInfo (productlId: Long): Future[ProductInfo]

Future { restTemplate.getForObject(....) 1}
}

Executed in a threaded pool

@crichardson




ProductDetallsService: using
Scala Futures

class ProductDetailsService

Return a Scala Future

def getProductDetails (productlId: Long) : Future[ProductDetails] = {
val productInfoFuture = productInfoService.getProductInfo (productId)
val recommendationsFuture =
recommendationService.getRecommendations (productId)
val reviewsFuture = reviewService.getReviews (productId)

for (((productInfo, recommendations) ,6 reviews) <-
productInfoFuture zip recommendationsFuture zip reviewsFuture)
yield ProductDetails (productInfo, recommendations, reviews)

Gathers data without blocking

@crichardson




Async ProductController: using
Spring MVC DeferredResult

@Controller Spring MVC
class ProductController ... DeferredResult

=

@RequestMapping (Array (" /productdetails/{productId}"))
Future
@ResponseBody
def productDetails (@PathVariable productId: Long)
: DeferredResult[ProductDetails] =
val productDetails =
productDetailsService.getProductDetails (productId)

val result = new DeferredResult[ProductDetails]

productDetails onSuccess ({

case r => result.setResult(r)
} Convert Scala Future
productDetails onFailure ({ 10

case t => result.setErrorResult (t) DeferredResult

}

result
@crichardson




Servlet layer Is asynchronous
BUT
the backend uses thread

DOO0IS
—

Need event-driven REST
client

@crichardson



Spring AsyncRest lemplate

New in Spring 4
Mirrors Restlemplate
Can use HttpGomponents NIO-based AsyncHttpClient

Methods return a ListenableFuture

Yet another

x JDK 7 Future + callback methods 7 -
Future”!

@crichardson




ProductinfoService: using the

AsyncRest lemplate

class ProductInfoService {
val asyncRestTemplate = new AsyncRestTemplate (
new HttpComponentsAsyncClientHttpRequestFactory())

override def getProductlInfo(productId: Long) = {
val listenableFuture =
asyncRestTemplate.getForEntity (" {baseUrl}/productinfo/{productlid}",
classOf [ProductInfo],
baseUrl, productId)

toScalaFuture (listenableFuture) .map { .getBody }

Convert to Scala Future and get entity

hiip://hc.apache.org/nitpcomponenis-asyncciient-dev/ @crichardson




Converting ListenableFuture to
Scala Future

def toScalaFuture|[T] (1f : ListenableFuture[T])
Future[T] = {

val p = promise[T] () Creates a promise = producer AP

1f.addCallback (new ListenableFutureCallback[T] {
def onSuccess (result: T) { p.success (result)}
def onFailure(t: Throwable) { p.failure(t) }

1)
p.future

Propagate outcome to promise

Return future

@crichardson




Now everytning 1S non-

blocking :-)

We have achieved scaling Nirvana




WT*#*# Is my code doing?

= Operations initiated in one thread but fail in-another
® | ack of a full stack trace can'make debugging difficult
® |nherent problem of async/event driven programming

» Futures make it very:-easy to forget to handle errors

x someFuture.foreach { handleTheHappyPath }

= Erroris quietly ignored: similar to an empty catch {}
block

@crichardson




Agenda

= [he need for concurrency
= Simplifying concurrent code with Futures

» Consuming asynchronous streams with Reactive
Extensions

@crichardson




Let’s Imagine you have a
stream of trades

and
you need to calculate the 15
minute rolling average price of
each stock




Where Is the high-level

abstraction that simplifies
solving this problem




FuturellList|T]]

Not applicable to infinite
streams




Pipes and Eilters
e.g. Spring Integration
_|_

Complex event processing (CEP)

Not bad but tends ko be an exbternal DSL,
heavy weight, sE&R&aLLv defined, ..

@crichardson



Introducing Reactive
Extensions (Bx)

The Reactive Extensions (Bx):is a liorary for composing
asynchronous -and event-based programs using
observable seqguences and LINQ-style query operators.
Using Rx, developers represent asynchronous data
streams with Observables , query asynchronous

data streams using LINQ operators , and

hitps://rx.codeplex.com/

@crichardson



About RxJava

NETFLIX

Reactive Extensions (Rx) for the JVM

Original- motivation for:Netflix-was 1o provide rich Futures

Implemented in Java

Adaptors for Scala, Groovy and CGlojure

https://github.com/Netflix/BxJava

@crichardson




RxJava core concepts

An asynchronous
stream of items

trait Observable[T] {
def subscribe (observer : Observer|[T]) : Subscription

Notifies

trait Observer[T] {
def onNext (value : T) Used to
def onCompleted () unsubscribe
def onError (e : Throwable)

}

@crichardson




Comparing Observable to...

= Observer pattern - similar-but adds
®  Observer.onComplete()
= Observer.onkrror()

= [terator pattern = mirror image
» Push rather than pull

= Future - similar but

= Represents a stream of multiple values

@crichardson




SO what?




Fun with observables

val oneltem = Observable.items(-1L)
val every10Seconds = Observable.interval(10 seconds)

val ticker = oneltem ++ every10Seconds

val subscription = ticker.subscribe ( new Observer|{L.ong] {
override def onNext(value: Long) ={ printin(*value=" + value) }

})

subscription.unsubscribe()
-1 O

t=0

@crichardson




Creating observables

Observable.create({ observer: Observer|[T] =>

= Function
observer.onNexi(...) called when

Observer
observer.onGCompleted() subscribes

observer.onError(...)

Subscription{ ... }
}

) Called when observer
unsubscribes

@crichardson




Creating observables from
Scala Futures Query AWS

def getTableStatus(tableName: String) = {
val future = dynamoDbClient.describeTable(new Describe TableReqguest(tableName))

Observable.create({ observer.onNext: Observer[DynamobDbStatus| =>
future.onComplete {
case Success(response) =>
observer.onNext(DynamoDbStatus(response.get Table.get TableStatus))
observer.onCompleted|)

case Failure(t: ResourceNotFoundException) =>
observer.onNext(DynamoDbStatus(*NOT_FOUND"))
observer.onCompleted()

case Failure(somekrror) =>
observer.onError(somekError)

}
Subscription({})

)
}

Propagate outcome




Transforming observables

val tableStatus = ticker.flatMap { i =>
logger.info(*{}th describe table”, 1 + 1)
getlableStatus(name)

}

Status1 Status? Status3

t=0 t=10 =20

+ Usual collection methods: map(), filker(), take(), drcap(),

@crichardson




Back to the stream of [rades

averaging example...




Calculating averages

class AverageTradePriceCalculator {

def calculateAverages (trades: Observable[Trade]) :
Observable[AveragePrice] {

}

case class Trade( case class AveragePrice (
symbol : String, symbol : String,
price : Double, price : Double,

)

@crichardson




Using groupBy()

Observable[Trade]

APPL : 401 IBM : 405 CAT : 405 APPL: 403

groupBy( (trade) => trade.symbol)

APPL : 401 APPL: 403

IBM : 405

CAT : 405

Observable[GroupedObservable[String, Trade]] ,
@crichardson




Using window()

Observable[Trade]
APPL : 401 APPL 405 APPL 405

window( . ..)

5 minutes

A
>

APPL : 401 APPL 405 APPL 405

JUSECS  APPL 405  APPL:405  APPL: 403

SUSeCS  APPL : 405

<
<

Observable[Observable[Trade] ] @crichardson




Using foldLeft()

Observable[Trade]

APPL : 402  APPL :405  APPL: 405

foldLeft(0.0)( + .price)
/- length

APPL : 4006

Observable[AveragePrice] Singleton

@crichardson




Using flatten()

Observable[Observable[AveragePrice] ]

APPL : 401 APPL: 403

IBM : 405

CAT : 405

flatten()

APPL : 401 IBM : 405 CAT : 405 APPL: 403

Observable[AveragePrice] Qcrichard
crichardson




Calculating average prices

def calculateAverages (trades: Observable[Trade]) : Observable|[AveragePrice] =

trades.groupBy( .symbol) .map { symbolAndTrades =>
val (symbol, tradesForSymbol) = symbolAndTrades

val openingEverySecond =
Observable.items (-1L) ++ Observable.interwval (1 seconds)

def closingAfterSixSeconds (opening: Any) =
Observable.interval (6 seconds) .take (1)

tradesForSymbol .window (.. .) .map {
windowOfTradesForSymbol =>
windowOfTradesForSymbol.fold((0.0, 0, List[Double]())) { (soFar, trade)

val (sum, count, prices) = soFar
(sum + trade.price, count + 1, trade.price +: prices)
} map { x =>
val (sum, length, prices) = x
AveragePrice (symbol, sum / length, prices)
}
}.flatten
} .flatten

@crichardson




Summary

Consuming Web services asynchronously: is essential

Scala-style Futures are a powerful-concurrency abstraction

Rx Observables
® cven more powertul

® unifying albstraction for a wide variety of use cases

@crichardson
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