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Responsiveness

always available
interactive
(near) real-time



Bounded Latency

- fan-out In parallel and aggregate
* use circuit breakers for graceful degradation

* use bounded queues, measure flow rates
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- fan-out In parallel and aggregate
* use circuit breakers for graceful degradation

* use bounded queues, measure flow rates



Bounded Latency

Lit¢le’s Law

« fan

Queuelength = Rate ¢ Processinglime
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(averaging implied for all values)
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Handle Failure

« software will fail

* hardware will fall

* humans will fail

* system still needs to respond = resilience






Asynchronous Failure

- parallel fan-out & distribution " asynchronous execution

» compartmentalization & isolation
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Asynchronous Failure

- parallel fan-out & distribution " asynchronous execution
» compartmentalization & isolation

* no response! "> timeout events

* Someone else’s exception?  SUPErvision
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Asynchronous Failure

- parallel fan-out & distribution " asynchronous execution
» compartmentalization & isolation

* no response! "> timeout events
* Someone else’s exception?  SUPErvision

- location transparency ~ scamless resilience



Handle Load






Handle Load

» partition iIncoming work for distribution
» scale capacity up and down on demand

* supervise and adapt

- location transparency ~ seamless scalability
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Consequences

» distribution & scalability = loss of strong consistency
+ CAP theorem! — not as relevant as you think

- eventual consistency ™ gossip, heartbeats, dissemination

(http://pbs.cs.berkeley.edu)
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Corollary

* Reactive needs to be applied all the way down

- Polyglot deployments demand collaboration



But what about us,
the developers?



Trust the Machine

» rethink the architecture
* break out of the synchronous blocking prison

» asynchronous program flow "+ no step-through debugging



Simple Building Blocks

» clean business logic separate from failure handling

 distributable units of work

- effortless parallelization

* less assumptions " lower maintenance cost



Simple Building Blocks

» clean business logic separate from failure handling

 distributable units of work

- effortless parallelization

* less assumptions " lower maintenance cost

* independent agents = fuiln €0 work with!



responsive

resilient reactive scalable

event-driven

http://reactivemanifesto.org/
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