
Go Reactive
Blueprint for Future Applications

Dr. Roland Kuhn — Akka Tech Lead, Typesafe Inc.



Starting Point:	


The User



browserThe User



browser frontend	


server

internal	


service

internal	


service storage

DB

external	


service



Responsiveness	


!

always available	


interactive	



(near) real-time



• fan-out in parallel and aggregate	



• use circuit breakers for graceful degradation	



• use bounded queues, measure flow rates

Bounded Latency



• fan-out in parallel and aggregate	



• use circuit breakers for graceful degradation	



• use bounded queues, measure flow rates

Bounded Latency

A CB



• fan-out in parallel and aggregate	



• use circuit breakers for graceful degradation	



• use bounded queues, measure flow rates

Bounded Latency

A

C

B



• fan-out in parallel and aggregate	



• use circuit breakers for graceful degradation	



• use bounded queues, measure flow rates

Bounded Latency

A

C

B

eve
nt-d
rive
n



• fan-out in parallel and aggregate	



• use circuit breakers for graceful degradation	



• use bounded queues, measure flow rates

Bounded Latency



• fan-out in parallel and aggregate	



• use circuit breakers for graceful degradation	



• use bounded queues, measure flow rates

Bounded Latency

do work

fail fast



• fan-out in parallel and aggregate	



• use circuit breakers for graceful degradation	



• use bounded queues, measure flow rates

Bounded Latency



• fan-out in parallel and aggregate	



• use circuit breakers for graceful degradation	



• use bounded queues, measure flow rates

Bounded Latency

Little’s Law 
!

QueueLength = Rate • ProcessingTime	


!

Latency = QueueLength • ProcessingTime	


!

(averaging implied for all values)



• fan-out in parallel and aggregate	



• use circuit breakers for graceful degradation	



• use bounded queues, measure flow rates

Bounded Latency

Little’s Law 
!

QueueLength = Rate • ProcessingTime	


!

Latency = QueueLength • ProcessingTime	


!

(averaging implied for all values)

e



Handle Failure

• software will fail	



• hardware will fail	



• humans will fail	



• system still needs to respond ➟ resilience





• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

Asynchronous Failure



• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

Asynchronous Failure



• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

Asynchronous Failure

Request

Response

Failure



• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

Asynchronous Failure

Request

Response

Failure

eve
nt-d
rive
n



• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

• location transparency ➟ seamless resilience

Asynchronous Failure



Handle Load



Handle Load



Handle Load

• partition incoming work for distribution	



• scale capacity up and down on demand	



• supervise and adapt	



• location transparency ➟ seamless scalability



Handle Load

• partition incoming work for distribution	



• scale capacity up and down on demand	



• supervise and adapt	



• location transparency ➟ seamless scalability

e



Consequences

• distribution & scalability ➟ loss of strong consistency	



• CAP theorem? — not as relevant as you think	



• eventual consistency ➟ gossip, heartbeats, dissemination	



!

(http://pbs.cs.berkeley.edu)

http://pbs.cs.berkeley.edu/


Consequences

• distribution & scalability ➟ loss of strong consistency	



• CAP theorem? — not as relevant as you think	



• eventual consistency ➟ gossip, heartbeats, dissemination	



!

(http://pbs.cs.berkeley.edu)e

http://pbs.cs.berkeley.edu/


Corollary	



• Reactive needs to be applied all the way down	



• Polyglot deployments demand collaboration



But what about us,	


the developers?



Trust the Machine

• rethink the architecture	



• break out of the synchronous blocking prison	



• asynchronous program flow ➟ no step-through debugging	



• loose coupling



Simple Building Blocks

• clean business logic separate from failure handling

• distributable units of work

• effortless parallelization

• less assumptions ➟ lower maintenance cost



Simple Building Blocks

• clean business logic separate from failure handling

• distributable units of work

• effortless parallelization

• less assumptions ➟ lower maintenance cost

• independent agents ➟ fun to work with!



event-driven

responsive

resilient scalablereactive

http://reactivemanifesto.org/

http://reactivemanifesto.org/

