Go Reactive
Blueprint for Future Applications

Dr. Roland Kuhn — Akka Tech Lead, Typesafe Inc.

Starting Point:
The User

| E

internal
service

g storage

frontend internal
server service

external
service

Responsiveness

always available
interactive
(near) real-time

Bounded Latency

- fan-out In parallel and aggregate
* use circuit breakers for graceful degradation

* use bounded queues, measure flow rates

- fan

* USE

* USE

Bounded Latency

-

_

o o

~

/

- fan

* USE

* USE

Bounded Latency

Bounded Latency

Ijii@ég“ /

-

Bounded Latency

- fan-out In parallel and aggregate
* use circuit breakers for graceful degradation

* use bounded queues, measure flow rates

« fan

* USE

* USE

Bounded Latency
4 N

&

o—© do work ®
O

Bounded Latency

- fan-out In parallel and aggregate
* use circuit breakers for graceful degradation

* use bounded queues, measure flow rates

Bounded Latency

Lit¢le’s Law

« fan

Queuelength = Rate ¢ Processinglime

* USE

Latency = Queuelength * Processinglime

* USE

(averaging implied for all values)

* USE

* USE

Bounded Latency
4 N

Lit¢le’s Law

. f
] Queuelength = Rate ¢ Processinglime

Latency = Queuelength * Processinglime

(averaging implied for all values)

L\d y

Handle Failure

« software will fail

* hardware will fall

* humans will fail

* system still needs to respond = resilience

Asynchronous Failure

- parallel fan-out & distribution " asynchronous execution

» compartmentalization & isolation

3 s R i!

}] } t | | n .: 55
ST | / | 11 Sy
Jie) |

‘ ! AN | ;
|

Asynchronous Failure

- parallel fan-out & distribution " asynchronous execution
» compartmentalization & isolation

* no response! "> timeout events

* Someone else’s exception? SUPErvision

* compz

* NO Ies

* SOoMme

Asynchronous Failure

- paralle

-~

Request

Response

Failure

~

>cution

/

* compg

* NO Ies

Asynchronous Failure

- S ALY

/

Request

- sOmé’\

Asynchronous Failure

- parallel fan-out & distribution " asynchronous execution
» compartmentalization & isolation

* no response! "> timeout events
* Someone else’s exception? SUPErvision

- location transparency ~ scamless resilience

Handle Load

Handle Load

» partition iIncoming work for distribution
» scale capacity up and down on demand

* supervise and adapt

- location transparency ~ seamless scalability

Handle Load

» partition iIncoming work for distribution
» scale capacity up and down on demand

* supervise and adapt

- location transparency ~ seamless scalability

Consequences

» distribution & scalability = loss of strong consistency
+ CAP theorem! — not as relevant as you think

- eventual consistency ™ gossip, heartbeats, dissemination

(http://pbs.cs.berkeley.edu)

http://pbs.cs.berkeley.edu/

Consequences

» distribution & scalability = loss of strong consistency

+ CAP theorem! — not as relevant as you think

- eventual consistency ™ gossip, heartbeats, dissemination

R

(http://pbs.cs.berkeley.edu)

http://pbs.cs.berkeley.edu/

Corollary

* Reactive needs to be applied all the way down

- Polyglot deployments demand collaboration

But what about us,
the developers?

Trust the Machine

» rethink the architecture
* break out of the synchronous blocking prison

» asynchronous program flow "+ no step-through debugging

Simple Building Blocks

» clean business logic separate from failure handling

 distributable units of work

- effortless parallelization

* less assumptions " lower maintenance cost

Simple Building Blocks

» clean business logic separate from failure handling

 distributable units of work

- effortless parallelization

* less assumptions " lower maintenance cost

* independent agents = fuiln €0 work with!

responsive

resilient reactive scalable

event-driven

http://reactivemanifesto.org/

http://reactivemanifesto.org/

