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Responsiveness	
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Handle Failure

• software will fail	



• hardware will fail	



• humans will fail	



• system still needs to respond ➟ resilience
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• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

• location transparency ➟ seamless resilience
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Consequences

• distribution & scalability ➟ loss of strong consistency	



• CAP theorem? — not as relevant as you think	



• eventual consistency ➟ gossip, heartbeats, dissemination	
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Corollary	



• Reactive needs to be applied all the way down	



• Polyglot deployments demand collaboration



But what about us,	


the developers?



Trust the Machine

• rethink the architecture	



• break out of the synchronous blocking prison	



• asynchronous program flow ➟ no step-through debugging	



• loose coupling
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• distributable units of work

• effortless parallelization

• less assumptions ➟ lower maintenance cost

• independent agents ➟ fun to work with!
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