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Responsiveness	

!

always available	

interactive	


(near) real-time
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Handle Failure

• software will fail	


• hardware will fail	


• humans will fail	


• system still needs to respond ➟ resilience
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• no response? ➟ timeout events

• someone else’s exception? ➟ supervision
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• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

• location transparency ➟ seamless resilience

Asynchronous Failure
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Consequences

• distribution & scalability ➟ loss of strong consistency	


• CAP theorem? — not as relevant as you think	


• eventual consistency ➟ gossip, heartbeats, dissemination	
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Corollary	


• Reactive needs to be applied all the way down	


• Polyglot deployments demand collaboration



But what about us,	

the developers?



Trust the Machine

• rethink the architecture	


• break out of the synchronous blocking prison	


• asynchronous program flow ➟ no step-through debugging	


• loose coupling
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• clean business logic separate from failure handling

• distributable units of work

• effortless parallelization

• less assumptions ➟ lower maintenance cost

• independent agents ➟ fun to work with!
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