
Go Reactive
Blueprint for Future Applications

Dr. Roland Kuhn — Akka Tech Lead, Typesafe Inc.



Starting Point:	

The User



browserThe User



browser frontend	

server

internal	

service

internal	

service storage

DB

external	

service



Responsiveness	

!

always available	

interactive	


(near) real-time



• fan-out in parallel and aggregate	


• use circuit breakers for graceful degradation	


• use bounded queues, measure flow rates

Bounded Latency



• fan-out in parallel and aggregate	


• use circuit breakers for graceful degradation	


• use bounded queues, measure flow rates

Bounded Latency

A CB



• fan-out in parallel and aggregate	


• use circuit breakers for graceful degradation	


• use bounded queues, measure flow rates

Bounded Latency

A

C

B



• fan-out in parallel and aggregate	


• use circuit breakers for graceful degradation	


• use bounded queues, measure flow rates

Bounded Latency

A

C

B

eve
nt-d
rive
n



• fan-out in parallel and aggregate	


• use circuit breakers for graceful degradation	


• use bounded queues, measure flow rates

Bounded Latency



• fan-out in parallel and aggregate	


• use circuit breakers for graceful degradation	


• use bounded queues, measure flow rates

Bounded Latency

do work

fail fast



• fan-out in parallel and aggregate	


• use circuit breakers for graceful degradation	


• use bounded queues, measure flow rates

Bounded Latency



• fan-out in parallel and aggregate	


• use circuit breakers for graceful degradation	


• use bounded queues, measure flow rates

Bounded Latency

Little’s Law 
!

QueueLength = Rate • ProcessingTime	

!

Latency = QueueLength • ProcessingTime	

!

(averaging implied for all values)



• fan-out in parallel and aggregate	


• use circuit breakers for graceful degradation	


• use bounded queues, measure flow rates

Bounded Latency

Little’s Law 
!

QueueLength = Rate • ProcessingTime	

!

Latency = QueueLength • ProcessingTime	

!

(averaging implied for all values)

e



Handle Failure

• software will fail	


• hardware will fail	


• humans will fail	


• system still needs to respond ➟ resilience





• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

Asynchronous Failure



• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

Asynchronous Failure



• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

Asynchronous Failure

Request

Response

Failure



• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

Asynchronous Failure

Request

Response

Failure

eve
nt-d
rive
n



• parallel fan-out & distribution ➟ asynchronous execution

• compartmentalization & isolation

• no response? ➟ timeout events

• someone else’s exception? ➟ supervision

• location transparency ➟ seamless resilience

Asynchronous Failure



Handle Load



Handle Load



Handle Load

• partition incoming work for distribution	


• scale capacity up and down on demand	


• supervise and adapt	


• location transparency ➟ seamless scalability



Handle Load

• partition incoming work for distribution	


• scale capacity up and down on demand	


• supervise and adapt	


• location transparency ➟ seamless scalability

e



Consequences

• distribution & scalability ➟ loss of strong consistency	


• CAP theorem? — not as relevant as you think	


• eventual consistency ➟ gossip, heartbeats, dissemination	


!

(http://pbs.cs.berkeley.edu)

http://pbs.cs.berkeley.edu/


Consequences

• distribution & scalability ➟ loss of strong consistency	


• CAP theorem? — not as relevant as you think	


• eventual consistency ➟ gossip, heartbeats, dissemination	


!

(http://pbs.cs.berkeley.edu)e

http://pbs.cs.berkeley.edu/


Corollary	


• Reactive needs to be applied all the way down	


• Polyglot deployments demand collaboration



But what about us,	

the developers?



Trust the Machine

• rethink the architecture	


• break out of the synchronous blocking prison	


• asynchronous program flow ➟ no step-through debugging	


• loose coupling



Simple Building Blocks

• clean business logic separate from failure handling

• distributable units of work

• effortless parallelization

• less assumptions ➟ lower maintenance cost



Simple Building Blocks

• clean business logic separate from failure handling

• distributable units of work

• effortless parallelization

• less assumptions ➟ lower maintenance cost

• independent agents ➟ fun to work with!



event-driven

responsive

resilient scalablereactive

http://reactivemanifesto.org/

http://reactivemanifesto.org/

