
Performance Testing with a Raspberry
Pi Wall running Java

Erik Wramner
CodeMint AB
http://codemint.com

http://codemint.com/

This session describes how we built a Raspberry Pi wall and
used it for affordable and realistic load tests

• Background

• Alternatives

• Implementation

• Load tests

• Live demo

• Results

• Questions

Agenda…

1

Background

2

Erik Wramner has worked with Java since 1997 and has
developed and tuned network applications for a long time

• Erik has been an active Java developer since 1997 and wrote

distributed network applications even earlier in C/C++

• Performance has often been a key requirement

• Cross-border stock trading gateway

• Credit card payment backend

• Telecom SS7 recorder

• Delivery chain replenishment & forecasting

• …

• Erik has worked as a performance expert internationally,

helping failing projects to get back on track

Background…

3

CodeMint is a Swedish consulting company with an edge in
Java, Oracle’s technology stack and performance tuning

• Java is our platform of choice – we have built many mission-

critical applications in Java, particularly for the finance industry

• We have worked extensively with Oracle’s technology stack

• Performance tuning is often included when we build

applications – in addition we perform health checks and help

customers test and tune existing systems

Background…

4

In one assignment we helped develop a business critical

network server with high uptime and performance targets

• The application had to be available 24x7x365, no downtime

• The expected load was fairly high with perhaps 50.000

concurrent long-lived connections and up to 100 business

transactions per second

• The server used a custom binary protocol and SOAP

• Security requirements were strict

Background…

How could we ensure that it worked as expected?
5

Alternatives

6

We decided to run prolonged load tests and considered

several alternatives before settling on a “Raspberry Wall”

• Single server

• Developer workstations

• The cloud

• …and finally the Raspberry Wall

Alternatives…

7

The most common approach is probably to use a single

server1 for load tests, but that is far from ideal

• A dedicated server is expensive and hard to obtain in many

organizations, in particular when time is short

• A shared server may not have the resources necessary for

proper long-running and intensive load tests

• A single server does not generate a realistic work load

 If the tests run on the application’s own server they

consume resources (skewing the results) and use the

loopback2 interface

 If the tests run on another server they are still likely to use

a single network interface

Alternatives – Single Server…

8

Note 1: Usually the build server or the application’s own server or a single developer workstation.

Note 2: A simple Grinder test on Windows 7 runs more than ten times faster when the network cable is removed! This is dodgy.

Another alternative is to use several developer workstations

for distributed load tests, but again there are problems

• In some organizations the developers are not allowed to install

software on their own machines

• In many organizations the developer workstations are rebooted

regularly for automated upgrades, that would break the tests

• Developer productivity and morale will suffer if their (perhaps

already slow) machines get overloaded by tests

• Developer machines are typically heavily utilized every now

and then, it can be tricky to generate a consistent load profile

over time

Alternatives – Developer Workstations…

9

Cloud-based load tests can be a big win, but in our case they

were simply not an option

• Cloud-based load tests have many advantages in general

 They are quick to setup for simple applications

 They can generate realistic load from many remote sites

 They come loaded with canned reports and analysis tools

 They can be very cost-effective for short tests

• Unfortunately they were not an option in this case

 They could not be allowed through the firewall

 They are obviously expensive1 for long-running tests with

many concurrent users

 They can sometimes support custom protocols, but “up

and running in five minutes” assume simple HTTP tests

Alternatives – The Cloud…

10

Note 1: We needed 40-50.000 concurrent users and wanted to run the tests repeatedly for months or at least weeks. There are many

variables. With the free load tester from webperformance.com and Amazon EC2 load generators at $1 per hour and generator and the

recommended 25 generators for 50.000 users it would cost $16.800 per month. Most vendors publish no price at this level (call for

options). For example blazemeter.com refers to the Enterprise option (no published price), but they charge $1499 per month for 30 test

hours with 40.000 users. You get the idea.

Finally, we got the idea to build a wall with cheap Raspberry

Pi units in order to run realistic load tests inside the firewall

• The wall can run inside the firewall and can be isolated from all

systems except for the test server

• The wall can be built cheaply with the right design

• The Raspberry Pi runs Java, so it is easy to write or reuse

existing tests that support custom protocols

• The tests can be realistic with many physical network cards,

many comparatively slow clients and long test durations

Alternatives – Raspberry Wall…

Last but not least, it seemed fun!
11

For reference the Raspberry Pi is about as fast as a 300MHz

Pentium 2, but with much better graphics

• ARM1176JZFS 700MHz

• 512M RAM

• 10/100M Ethernet

• SD card for storage

• No real time clock

Alternatives – Raspberry Wall…

12

Source: http://www.raspberrypi.org/faqs, 2013-09-04.

Implementation

13

We came up with a cost-effective design and built a small

prototype – then we built and configured a large wall

• Design

• Construction

• Installation and configuration

• Framework support

• Cloning and individualization

Implementation…

14

The Raspberry Pi itself is cheap, peripherals cost – the key is

to avoid them and to find a good cost effective network switch

• A Raspberry Pi with 512M RAM costs $25-$40, but it is easy to double that

with memory, network cables, USB cables, power and so on

• We soldered the units directly to a power supply – for small to medium walls

with less than 35 units an old PC power supply will do

• We bought memory cards for about $10 per unit

• We bought network cables – that added about $10 per unit, but it saved us

enough time to make it well worth it

• The switch is the most expensive part – it must have at least one gigabit port

towards the LAN and one 100Mbit port per Raspberry Pi

 Small consumer switches are cheap, but expensive per unit

 Large switches tend to have Enterprise price tags

• We ended up at about $3000 for 48 units

Implementation – Design…

15

We had to consider what Java version to use – the choice

was between free and fast, but Today that is a no-brainer

• Java SE 8 Embedded

(early release) supported

hard float and was the

fastest out there, but it

could not legally be used

in production

• Java SE 7 Embedded

was fast, but required soft

float and had to be

licensed for production

Implementation – Design…

TIME IN SECONDS FOR SIMPLE TEST

16

• OpenJDK was free and supported hard float, but it was much slower – in

particular with the default Zero engine

• Starting from September 2013. Raspbian ships with a version of Oracle’s

Java SE 7 that supports hard float, so Today the recommendation is

simple – go with Oracle!

Oracle’s JVM still rules with more realistic tests, so it is really

good news that it is included without any fuss

• The Oracle JVM was twice

as fast as the closest

contender – in addition the

load was lower, indicating

spare capacity!

• With Avian we got timeout

errors and irregular

throughput, probably due to

garbage collection1

• With Avian the JVM

frequently died and had to be

restarted after an hour or so

• JamVM and Zero performed

well with stable throughput

and without any errors

Implementation – Design…

17

BUSINESS TRANSACTIONS PER MINUTE

Note 1: Avian requires memory options to be expressed in bytes, so 256M is not understood. Even with correct options the throughput

varies a lot, though, see chart.

Note that recent Raspberry Pi units fail to boot with the soft-

float image – fortunately there is a solution

• When we built the wall Java SE 7 Embedded was the only supported

Java version from Oracle and it worked only with the old soft float image

Implementation – Design…

18

• Recent Raspberry Pi units with the Hynix1 memory chip

cannot boot with the old soft-float image (we encountered

this, some units worked and some seemed broken with the

same memory card – nasty!)

• Luckily the old kernel works if it gets past the boot sequence – if the boot

files are updated from a recent image the old image can be used

 Write the soft float image to a memory card

 Write the latest hard float image to another card or device and copy

bootcode.bin, start.elf and fixup.dat from the boot partition to the

boot partition for the soft-float image – copying only start.elf as some

blog posts suggest is not enough

 The updated soft float image should boot and everything should

work as expected

Note 1: The black, square RAM chip in the middle of the board – if it says Hynix or Samsung the unit will probably not boot with soft float.

We built a prototype using spare parts in order to make sure

that we were on the right track

Implementation – Construction…

It worked, but could not generate 100 business transactions

per second with SSL, so we had to build a larger wall 19

We built the real wall with 48 Raspberry Pi units soldered to a

5V power supply using a network switch for small businesses

• The network switch has 48

100Mbit ports and two 1Gbit

ports, perfect for our

application

• The power supply has ample

margins and can easily

support 48 units

• The Raspberry Pi units are

soldered to the power supply,

no expensive USB cables

are used

Implementation – Construction…

20

The installation is straightforward with the latest hard-float

Raspbian image

• Download the latest hard-float “wheezy” image from

http://www.raspberrypi.org/downloads and write it to a card

sudo dd if=2013-05-25-wheezy-raspbian.img of=/dev/sdb bs=1M

• Boot from the card and connect as pi/raspberry with SSH

• Perform initial configuration (sudo raspi-config)

 Expand the file system (or intentionally keep it small)

 Disable boot to desktop

 Overclock (we went for “Medium”)

 Advanced options, memory split: 16M for GPU

• Optionally register a custom NTP server in /etc/ntp.conf

• Reboot, update installed packages and install Java

sudo apt-get update; sudo apt-get upgrade

sudo apt-get install oracle-java7-jdk

Implementation – Installation…

21

http://www.raspberrypi.org/downloads

It is a good idea to use high-quality SD cards and to keep the

number of writes down for the long haul

• We bought cheap (class 4) memory cards and in hindsight that

was stupid – we have had 15 corrupted file systems and four

broken SD cards in less than a year

• Disable swapping (just in case)

sudo dphys-swapfile swapoff

sudo dphys-swapfile uninstall

sudo update-rc.d dphys-swapfile remove

• Remove unwanted cron jobs

cd /etc; sudo rm cron.weekly/man-db cron.daily/bsdmainutils cron.daily/man-db

cron.daily/aptitude cron.daily/apt

• Move the logs to a RAM disk and disable atime (/etc/fstab)

none /var/log tmpfs size=5M,noatime 0 0

• Limit logging (/etc/rsyslog.conf, don’t fill up the RAM disk)

Implementation – Configuration…

22

Overclocking improves performance, but beware as it may

cause instability and corrupted SD-cards

• The raspi-config tool has

five pre-defined levels for

overclocking – it is also

possible to fine-tune the

settings manually

• Overclocking does make a

difference, as the graph

shows

Implementation – Configuration…

0

5

10

15

20

25

30

None Modest Medium High Turbo

• Overheating is not an issue – at least not in Sweden!

• There are many reports of corrupted memory cards with

“Turbo”, even using class 10 cards – I would not go higher than

the “High” level and in fact we picked “Medium”

TIME IN SECONDS FOR TEST CASE

23

The Raspberry Pi probably supports your load test framework

of choice, but consider the CPU and memory limitations

• We had existing tests for The Grinder 3 (one of the leading

Java load test frameworks where tests are written in Jython)

and they worked out of the box – in general this is probably the

way to go, especially for HTTP, as it makes the tests more

portable

• The Raspberry is much slower than a PC and it has a fairly

limited amount of memory – we wrote our own tailored load

test framework in order to reduce unnecessary overhead

 No Jython engine

 Fewer classes, smaller footprint

 Several simulated clients per thread (think times), making

it easier to translate the results into business terms and

reducing the number of context switches

Implementation – Framework Support…

24

Installation and configuration takes time – do it once, then

clone the memory card and script individualization afterwards

• Install and test everything with a single Raspberry Pi

• If you are using soft float (no longer likely), make sure that all

Raspberry Pi units support it or update the boot files as

described earlier in this presentation

• Create an image from the SD card

• Copy the image to all the other cards

• Start the wall and optionally apply individual settings such as

unique host names using scripted SSH

Implementation – Cloning and Individualization…

The image also serves as an excellent backup, just in case!
25

Load tests

26

A load test should determine if the application meets its performance

requirements – they should be measurable and measured

• Determine targets (requirements)

• Generate load (Raspberry Wall)

• Measure

 Client-side statistics

 Server-side statistics

 Performance monitors (jconsole, perfmon, top)

 Profiling (visualvm)

• Analyze results

Load tests…

27

A test is only meaningful if it has clear success criteria

• 50.000 concurrent connections

• 100 business transactions per second

• Stable performance over time (at least one week)

• “Few” errors, preferably none

Load tests – Determine targets…

28

The wall generates requests, preferably ramping up the load

gradually in order not to kill the server

Load tests – Generate load…

29

The times for successful tests as well as any errors should be

recorded by the clients along with client side workload

Load tests – Measure…

• The load tests should measure and record connect times,

processing times and errors – some of this can be recorded on

the server as well, but only the client has the entire picture

• For complex tests the individual steps should be recorded with

processing times

• Use a performance monitor on the client side – if the client is

swamped (not that unlikely with a Raspberry) timeouts and

other errors are likely to occur – adjust the work load

accordingly!

Detailed logging is expensive, it may be wise to run one pass

with logging and one where it is disabled on the client side 30

Server-side statistics are at least as important – if possible

the server should be instrumented

Load tests – Measure…

• Total number of successful transactions

• Total number of errors

• Number of active connections

• Number of active threads

• Processing time per step for each business transaction (if

possible – this can be expensive)

These statistics can be invaluable in production
31

With or without instrumentation the server performance and

the JVM internals should be measured

Load tests – Measure…

Java comes with jconsole out of the box – use it!
32

It is also a good idea to use a profiler in order to find

bottlenecks in the code

Load tests – Measure…

• The visualvm profiler is included with Java SE 7 – while it is not

my personal favorite, you can’t beat the price and it is always

there when you need it

• A profiler shows where the application spends its time – don’t

optimize code that never runs

33

Note: The screenshot includes platform classes, which is unusual. With the default filters the hot spots in the application code would show

up instead. Platform hot spots may also be interesting at times, in particular when comparing JVM:s.

If the targets are met the test was successful – if not, the logs should

indicate where the bottleneck is

• Ideally the problem stands out, perhaps in the profiler

• In more complex cases the detailed logs must be analyzed –

make sure that they are in a format that can be imported into

Excel and/or a database!

• Some issues are JVM or platform specific, test the application

on several platforms if there are weird problems

• Google is your friend (well, at least in this case) – some issues

can be very hard to track down, but chances are that someone

has done it for you and blogged about it

Load tests – Analyze results…

34

Live demo

35

Depending on circumstances – test with full-size wall, Grinder

demo with travel wall or video of full-scale test

Live demo…

36

• Start Tomcat

• Start Grinder console

• Start wall and agents

• Run test and measure results

• Start custom server

• Start wall

• Start load generators

• Measure results

Results

37

The load tests did make a difference – we found and fixed

some issues, mostly related to JVM tuning

• Profiling found some bottlenecks in the light-weight SOAP

implementation that we could eliminate

• Profiling also told us what we didn’t need to tune – SSL

handshakes and XML parsing accounts for so much that

improvements in our code would hardly be noticeable

• Full GC pause times caused timeout errors with the original

settings – armed with that knowledge we could tune for short

pause times and pay with somewhat reduced throughput

• On some platforms performance would degrade over time – we

managed to work around that with JVM settings

Results…

38

We reached our targets and could demonstrate that the

application performed as it should under extreme conditions

Results…

39

The Raspberry Wall works well as a load generator – it was

rewarding to build, and we intend to put it to good use

• There have been no real issues except for a hick-up with some

units that failed to boot with the soft float image and with the

OpenJDK Avian crashes

• In the long term, cheap memory cards are a hazard – limit

writes and invest in quality SD cards

• The normal Java load test frameworks can be used, indeed our

existing Grinder tests worked without any changes

• The platform seems to get better all the time – updates are

released and there is a wealth of documentation on the Internet

• We are very happy that Oracle has released their JVM for

Raspbian and look forward to the official Java 8 release!

Results…

40

Questions?

Erik Wramner
CodeMint AB
Mässans gata 18
412 51 Göteborg
Sweden
http://codemint.com

http://codemint.com/

