
The Bleeding Edge
Richard Warburton and Martijn Verburg

http://www.jclarity.com

- Dorothy, Wizard of Oz

"Toto, I’ve a feeling we’re
not in Kansas anymore"

● Richard - Engineer, Author, Speaker

● Martijn - CEO, Author, Speaker, Cat Herder

● jClarity - Solves performance problems

Who are we?

The Status Quo

What did jClarity build?

How we pick Technology

Technology Scorecard

A Brave New World

We have a lot of Java EE Experience

● LJC is on the JCP Executive Committee

● Martijn is a CERTIFIED BEA Weblogic
○ Something, something, something Darkside

● Lots of experience and deep community

But what if you don’t use that?...

… we don’t!

The Status Quo

What did jClarity build?

How we picked Technology

Technology Scorecard

A Brave New World

The Answer
..to your performance problems

Easy Access, Lightweight and Low Impact

Daemon, Aggregator & UI

● Daemon
○ Needs to be Low Impact, Low Traffic, Self-Updating

● Aggregator
○ Non-blocking I/O, Sockets > HTTP, High Availability

● UI
○ Rich Browser App, Accepts server-push events

Doesn’t really fit the Java EE World

● Daemon: Java EE is not low impact

● Server: Java EE is mainly about req/resp

● UI: Java EE lacks support for push events
○ Java EE 7 has Websockets now

The Status Quo

What did jClarity build?

How we picked Technology

Technology Scorecard

A Brave New World

Our Methodology

Stolen ‘Adopted’ from Matt Raible

1. Identify Ranking Criteria
2. Weight each criteria
3. Score each solution
4. Multiply and add
5. Prototype top two choices

Observations

● Cons
○ Still Subjective
○ No guarantees

● Pros
○ Incorporates diverse feedback
○ Avoids bike-shedding
○ Avoids Technology Dictatorship

The Status Quo

What did jClarity build?

How we picked Technology

Technology Scorecard

A Brave New World

What Tech Stack did we pick?

AngularJS

● Client-side Javascript framework

● Model-View-Whatever (MVC or MVVM)

● Two-Way Data Binding

● Directives used to encapsulate components

AngularJS - Positives
● Html5 concepts without adoption issues

● Declarative - easy to understand and read

● Simple code structure

● Client side templating

AngularJS - Negatives
● Hard to integration test

● Use of $scope.$apply

● People are familiar with jQuery

○ Declarative learning curve.

● Javascript tooling still kinda sucks

AngularJS - Scorecard

"Real win over hand rolled Javascript"

MongoDB

● NoSQL Document Store

● “Scalable” - easy sharding

● “Fault Tolerant” - easy data replication
○ Saved our asses at least once….

● The new DB sexy!

MongoDB - Positives

● Document Modelling

● Nice API

● Easy to adopt and get started

● Easy Replication and Sharding

● Can be Fast*

MongoDB - Negatives (1)
● Security

○ we compiled an SSL-enabled mongo
○ pwning folks? Find out if they use Mongo!
○ tool support

● Data Integrity Concerns
● Split Brain - election algorithm failures

MongoDB - Negatives (2)
● Difficult to automatically sysadmin

● Immaturity of Drivers/Connectors (PHP)

● Document model is limited

● New query language to learn

● Poor timezone support

MongoDB - Scorecard

"Consider your security strategy well."
"Is a document store what you really need?"

Vert.x

● Polyglot Reactive Programming Framework

● Message Passing Oriented
○ Lightweight Eventbus

○ No Shared Mutable State

● Non-blocking I/O

● Websocket Support

Vert.x

● Polyglot Reactive Programming Framework

● Message Passing Oriented
○ Lightweight Eventbus

○ No Shared Mutable State

● Non-blocking I/O

● Websocket Support

● No shared state, easy concurrency

● Eventbus to the browser!

● Community++

● Polyglot

○ We used Groovy and Java

Vert.x - Positives

Vert.x - Negatives
● Immaturity:

○ Released 2.0 without supporting 1.3

○ Testing Framework not quite there

● NIH Logging

● Inter Machine Eventbus Security

○ Not originally designed for the open internet

Vert.x - Scorecard

"It's perfect…. for the RIGHT use case."

Chef

● Automates server configuration
○ Centralised repo of pre-built recipes

○ Ruby based DSL

● Can also automate application deployment
○ Run update to deploy config/binaries

Chef - Positives

● Lots of Java/JVM recipes

● Ability to set roles and override properties

● Centrally controlled configuration

● Provides structure and deployment model

Chef - Inconsistent
knife cookbook upload apache2

knife role from file roles/foo/bar.rb

knife data bag from file users john.json

Chef - Negatives

● Managing dependencies is difficult
○ Use Librarian to help

● Not Declarative
○ e.g: doesn’t remove old config

● Still very complex
○ Steep learning curve

Chef - Scorecard

"Chef, it's way better than shell scripts"

Common Bleeding Edge Themes
1. Immaturity

2. Lack of tooling

3. Problems at the boundary

The Status Quo

What did jClarity build?

How we picked Technology

Technology Scorecard

A Brave New World

Technology ←→ $$$$$$$

What are you paying for?

● What does your support contract get you?

● Who does it get you?

● What’s the lock-in?

A La Carte Open Source

● Popular with $0 budget startups

● Commercially funded tech

● Strong Community Support

● Benefits elsewhere

The 'A La Carte' Relationship

● Be part of the community
○ We participated in Vertx IRC/London meetings

● Don’t diverge - upstream Patches
○ Vert.x, mod-mongo, Jacoco

● Open Source your plumbing
○ https://github.com/johnoliver/release-version-plugin

https://github.com/johnoliver/release-version-plugin
https://github.com/johnoliver/release-version-plugin

How do I do this?

● Low risk project
○ 20% time?

● Ask for forgiveness,
not permission!

● Don’t fear “them”

Q&A

@richardwarburto
@karianna
@jclarity

