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- Dorothy, Wizard of Oz

"Toto, I’ve a feeling we’re 
not in Kansas anymore"



● Richard - Engineer, Author, Speaker

● Martijn - CEO, Author, Speaker, Cat Herder

● jClarity - Solves performance problems

Who are we?



The Status Quo

What did jClarity build?

How we pick Technology

Technology Scorecard

A Brave New World





We have a lot of Java EE Experience

● LJC is on the JCP Executive Committee

● Martijn is a CERTIFIED BEA Weblogic 
○ Something, something, something Darkside

● Lots of experience and deep community



But what if you don’t use that?...

… we don’t!
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The Answer
..to your performance problems

Easy Access, Lightweight and Low Impact





Daemon, Aggregator & UI

● Daemon
○ Needs to be Low Impact, Low Traffic, Self-Updating

● Aggregator
○ Non-blocking I/O, Sockets > HTTP, High Availability

● UI
○ Rich Browser App, Accepts server-push events



Doesn’t really fit the Java EE World

● Daemon: Java EE is not low impact

● Server: Java EE is mainly about req/resp

● UI: Java EE lacks support for push events
○ Java EE 7 has Websockets now
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Our Methodology

Stolen ‘Adopted’ from Matt Raible

1. Identify Ranking Criteria
2. Weight each criteria
3. Score each solution
4. Multiply and add
5. Prototype top two choices





Observations

● Cons
○ Still Subjective
○ No guarantees

● Pros
○ Incorporates diverse feedback
○ Avoids bike-shedding
○ Avoids Technology Dictatorship
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What Tech Stack did we pick?





AngularJS

● Client-side Javascript framework

● Model-View-Whatever (MVC or MVVM)

● Two-Way Data Binding

● Directives used to encapsulate components



AngularJS - Positives
● Html5 concepts without adoption issues

● Declarative - easy to understand and read

● Simple code structure

● Client side templating



AngularJS - Negatives
● Hard to integration test

● Use of $scope.$apply

● People are familiar with jQuery

○ Declarative learning curve.

● Javascript tooling still kinda sucks



AngularJS - Scorecard

"Real win over hand rolled Javascript"



MongoDB

● NoSQL Document Store

● “Scalable” - easy sharding

● “Fault Tolerant” - easy data replication
○ Saved our asses at least once….

● The new DB sexy!





MongoDB - Positives

● Document Modelling

● Nice API

● Easy to adopt and get started

● Easy Replication and Sharding

● Can be Fast*



MongoDB - Negatives (1)
● Security

○ we compiled an SSL-enabled mongo
○ pwning folks? Find out if they use Mongo!
○ tool support

● Data Integrity Concerns
● Split Brain - election algorithm failures



MongoDB - Negatives (2)
● Difficult to automatically sysadmin

● Immaturity of Drivers/Connectors (PHP)

● Document model is limited

● New query language to learn

● Poor timezone support



MongoDB - Scorecard

"Consider your security strategy well."
"Is a document store what you really need?"



Vert.x

● Polyglot Reactive Programming Framework

● Message Passing Oriented
○ Lightweight Eventbus

○ No Shared Mutable State

● Non-blocking I/O

● Websocket Support
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● No shared state, easy concurrency

● Eventbus to the browser!

● Community++

● Polyglot

○ We used Groovy and Java

Vert.x - Positives



Vert.x - Negatives
● Immaturity:

○ Released 2.0 without supporting 1.3

○ Testing Framework not quite there

● NIH Logging

● Inter Machine Eventbus Security

○ Not originally designed for the open internet



Vert.x - Scorecard

"It's perfect…. for the RIGHT use case."



Chef

● Automates server configuration
○ Centralised repo of pre-built recipes

○ Ruby based DSL

● Can also automate application deployment
○ Run update to deploy config/binaries



Chef - Positives

● Lots of Java/JVM recipes

● Ability to set roles and override properties

● Centrally controlled configuration

● Provides structure and deployment model



Chef - Inconsistent
knife cookbook upload apache2

knife role from file roles/foo/bar.rb

knife data bag from file users john.json



Chef - Negatives

● Managing dependencies is difficult
○ Use Librarian to help

● Not Declarative
○ e.g: doesn’t remove old config

● Still very complex
○ Steep learning curve



Chef - Scorecard

"Chef, it's way better than shell scripts"



Common Bleeding Edge Themes
1. Immaturity

2. Lack of tooling

3. Problems at the boundary
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Technology ←→ $$$$$$$



What are you paying for?

● What does your support contract get you?

● Who does it get you?

● What’s the lock-in?



A La Carte Open Source

● Popular with $0 budget startups

● Commercially funded tech

● Strong Community Support

● Benefits elsewhere



The 'A La Carte' Relationship

● Be part of the community
○ We participated in Vertx IRC/London meetings

● Don’t diverge - upstream Patches
○ Vert.x, mod-mongo, Jacoco

● Open Source your plumbing
○ https://github.com/johnoliver/release-version-plugin

https://github.com/johnoliver/release-version-plugin
https://github.com/johnoliver/release-version-plugin


How do I do this?

● Low risk project
○ 20% time?

● Ask for forgiveness, 
not permission!

● Don’t fear “them”





Q&A

@richardwarburto
@karianna
@jclarity


