The Nati

IX

A Field
Guide to
DSL Design
Tomer Gabel, W
Jfokus, January 2015

Csen

onal Trust Handbook 2009 % |

| THE NATIONAL ;cﬂ.:wz@E
THE NATIONAL TRUST HANDBOOK 2007 5

__THE NATIONAL TRUST HANDBOOK . 2007 5

__THE NATIONAL TRUST HANDBOOK 2004 v...ll
THE NATIONAL TRUST HANDBOOK 2005 §
THE NATIONAL TRUST HANDBOOK 2004 5
THE NATIONAL TRUST HANDBOOK _ 2003 5

.:_.._”._v_»_,_:/,.,:_,____.__,?_ Ouvwimvy £ %

IV

DSLs

» Designed for specific application domains
» Designers can make more assumptions
* This enables optimized syntax for:
—Conciseness
—Correctness

—Readability
WiX

External DSL

 Standalone specification and grammar

 Explicit library/tool support (lexer, parser)

« Explicit lifecycle (build phase or runtime)

WiX

Examples

» Data querying with SOL:

SELECT sl.article, sl.dealer, sl.price
FROM shop s1
LEFT JOIN shop s2
ON sl.article = s2.article
AND sl.price < s2.price
WHERE s2.article IS NULL;

WiX

Examples

 Text formatting with Markdown:

Download

[Markdown 1.0.1][c¢!] (18 KB) -- 17 Dec
2004

[dl]: http://daringfireball.net/projects/
downloads/MarkRdown 1.0.1.z1p

WiX

Internal DSL

« Extends some host language (Scala)

 Exploits the host to add new syntax
— Within the confines of the host
—Cannot add new syntactic constructs
—Usage 1s valid code in the host language
» Lifecycle 1s managed by the host
WiX

Examples

» Testing with ScalaTest:

"Empty combinator" should {

"successfully validate an empty sequence" in {
val left = Seqg.empty[String]
val validator = new Empty[Seq[String |]
validator(left) should be(aSuccess)

}

"render a correct rule violation" in {
val left = Some("content")
val validator = new Empty[Option[String | |
validator(left) should failWith("must be empty”)

}
}

Examples

* Request routing with Scalatra:

get("/guess/:who") {
params(“who") match {
case "Frank” => "You got me!"
case _ => pass()

WiX

Examples

* JSON AST construction with Play:

Json.obj("users" -> Json.arr(

Json.obj("name" -> "bob",

"age” -> 31,

"email" -> "bob@gmail.com"),
Json.obj("name" -> "kiki",

"age" -> 25,

"email” -> JsNull)

))

Specificity

» |ldentify your actors
» What actions can they take?
» What objects do they act on?

» What are the consequences of these

actions?

WiX

Example: Assertions

Caller has a piece of data

And an assumption on its shape

Caller asserts that the assumption holds

If not, an exception 1s thrown

Audience

* Know your users
* Which actor do they represent?
» What is the desired consequence?

» How would they express this desire?

WiX

Example: Assertions

* Only one actor and consequence

» But how to best express this desire?

» Start with the user’s perspective.
—We already have some data
—We need a way to define assumptions

—And concise syntax for assertions
WiX

Articulation

» Choose a vocabulary:
— Nouns describe objects
— Adjectives qualify objects
— Verbs describe actions

— Adverbs qualify actions
WiX

Example: Assertions

e An assertion is a sentence:

“list should be empty”

Object
(adjective)

Example: Assertions

« Assumptions (simple) < Assumptions

_ empty (parameterized)

— null — equalTo

— true — startWith

_ false — endWith

— left — contain

— right — matchRegex

— defined

— completed » Modifiers (adverbs)
o — not

WiX

Mode

Imperative DSLs evaluate eagerly
DSL expressions have effects
Sometimes called "shallow embedding”

Examples:
— Ant tasks

— Assertions

WiX

Mode

Prescriptive DSLs are pure and lazy
Results are execution plans

Prescribe behavior to subsequent logic
Also called “deep embedding”

Examples:
— Request routing
— Query languages

WiX

Mode

 Prescriptive DSLs are more powerful
— Result and evaluation can be optimized

— Evaluation can be deferred freely

» But are more complex to get right

— Results require a domain model

— Evaluation requires separate logic

WiX

Infix Notation

* Also known as “dot free syntax”
 Basic building block in fluent DSLs
» Applies to arity-1 function applications

object.method(parameter)

]

object method parameter

WiX

Infix Notation: Caveats

» Chaining must be done with care

lilst should be empty

Parameter

* This 1s what we expect.

WiX

Infix Notation: Caveats

» Chaining must be done with care

list should be empty
Object Parameter

* Infix notation is bloody literal!
» What is the type of be?

— Probably not what you meant

WiX

Infix Notation: Caveats

 Workaround 1: Contraction
=> list shouldBe empty

 Workaround 2: Parentheses
> list should be(empty)

* There is no "right” answer
— It's an aesthetic preference

WiX

Infix Notation: Caveats

» Chaining must be done with care

list should be empty

oBEeEn IiResE) [P

Infix Notation: Caveats

» Chaining must be done with care

list should be empty =2

* Must have odd number of participants

 This expression is illegal in Scala!
— (Unless you use postfix operators. Don't.)

WiX

Implicit Classes

The entry point into your DSL

list shouldBe empty

Known a-priori Extension Method

The extended type 1s domain-specific
Prefer value classes for performance
Also used to lift values into your domain

WiX

-

g — i N
VAVAYAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAYAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAW fEccze
= l“'ﬁﬂ'

I 3 = "*.'_' g
S ;
. /1 ‘ < -

STEP 3:
PUTTING IT TOGETHER

Foundation

* An assertion is a sentence with the shape:
data shouldBe predicate

» We first need a predicate definition:

trait [-T] {
def : = Boolean
def : String

}

WiX

Foundation

« We next need an entry point into our DSL
 Data is the only known entity
» We'll need to extend it:

implicit class [T](data: 7) {

def (predicate: []) = »?2?
}

WiX

Foundation

* Thisis an imperative DSL
 Assertion failure has consequences

* In our case, an exception is thrown:

implicit class [T](data: 7) {
def (predicate: [T]) =
require(predicate test data,
s"Value $data ${predicate.failure}")

WiX

Foundation

» We can start implementing predicates:
Nil shouldBe empty

» A generic solution is readily apparent:

def [T <:) =
new [T] {
def X = Boolean = .isEmpty
def = "1s not empty"
}

WiX

SO good.

NOW THINGS
GET HAIRY

Keywords

« What about booleans?
(3*4>10) shouldBe true

» Booleans are reserved lkeywords
— Can’t provide a def

— Can’t provide an object

» Can we support this syntax?
WiX

Keywords

» Workaround: Lift via an implicit class

implicit class (b:
extends [Boolean] {
def : Boolean = Boolean = == b
def = s"is not $b"

}

WiX

Keywords

We have a similar issue with null;
val : String = null
ref shouldBe null

We can’t lift null implicitly, because:
def (predicate: [T]): Unit

Null is bottom type, extends Predicate[T]
Implicit search does not take place!

WiX

Keywords

» Workaround: Specific method overload
— Should only apply when T is a reference type

implicit class [T](data: T) {
def (n:)
(implicit ev: <:<): Unit =
require(data == null,

s"Value $data is not null")

WiX

Parameterization

« What about parameterized predicates?
3*4 shouldBe equalTo 12

» The equality predicate is simple enough:

def [T](rhs: T) = new [7] A
def : = Boolean = _ == rhs
def = s"1s not equal to $rhs”

}

» But we have an even number of parts!

WiX

Parameterization

 Workaround: Parentheses
3*4 shouldBe equalTo(12)

* There is no way* to avoid this entirely
— Some sentences are shorter
— Impossible to guarantee the odd part rule

*... that I know of

WiX

Grammar Variance

Assumption Example

startWith "Jfokus" should startWith("J1")
endWith "Jfokus" should endWith("fokus")
contain List(1, 2, 3) should contain(2)
matchRegex "Jfokus" should matchRegex("Jf.*")

Can you spot the difference?

Grammar Variance

» We must support predicate families:

— Simple modal form:
List(1, 2, 3) should contain(2)

— Compound subjunctive form:
3*4 shouldBe equalTo(12)

* In other words, we need another verb

WiX

Grammar Variance

* A simple solution:

implicit class [T](data: T) {
private def (predicate: [T]): Unit =
require(predicate test data,
s"Value $data ${predicate.failure}")

def (predicate: [T]): Unit =
test(predicate)

def (predicate: [T]): Unit =
test(predicate)

WiX

Grammar Variance

* A simple solution:

implicit class EntryP
private def test(pr
require(predicate

[T]
te:

def shol
test(pre

def should([
test(predi

Grammar Variance

* Incorrect grammar is legal:
(1, 2, 3) shouldBe contain(2)

 We lack differentiation between families

* First, define adequate base traits:

trait [-T] extends []
trait [-T] extends [T]

WiX

Grammar Variance

* Next, modify the verbs accordingly:

def (predicate: [T])..
def (predicate: [T])..

« We must also enforce the decision:

— Make the base trait Predicate[T] sealed

— Move it to a separate compilation unit

 Finally, modify all predicates to comply
WiX

Negation

« Negation ("not” adverb) is not just syntax
— Predicate must support negation

— Negative messages must be available

« We must extend the model

 But first we must decide on the grammar

WiX

Negation

« Compound?
— List(1, 2, 3) shouldNotBe empty

— List(1, 2, 3) shouldNot be(empty)

« Modal?

— "Programmers" shouldNot startWith("Java")

» Again, an aesthetic choice

Negation

 Predicate[T] extended with negation:

sealed trait Predicate[-T] {
def test: T = Boolean

def failureNeg: String

type Self[-T] <: Predicate[T]
def negate: Self[T]

) \
4

Negation

» Adding negation support to each family:

trait [-T]
extends [T] { self =
type [-T] = [T]
def = new [1T] {
def = self.test andThen { ! }
def = self.failureNeg
def = self.failure
}
}

WiX

Negation

* Finally, add the not modifier (adverb):

def [T](pred: [T]): pred. [1] =
pred.negate

 Etvoila:

(1, 2, 3) shouldBe not(empty)
"Programmers" should not(startWith("Java®))

WiX

Bl tomer@tomergabel.com
Y @tomerg

in http://il.linkedin.com/in/tomergabel

Sample code at:
O http://tinyurl.com/scala-dsl-guide

Thank you for listening

WE'RE DONE HERE!

