
Ceylon at Jfokus
Gavin King - Red Hat
profiles.google.com/gavin.king
ceylon-lang.org

http://profiles.google.com/gavin.king

We’re fans of Java

If I sound critical of Java (or any other language) in this presentation
it’s merely to identify problems that require solutions

Indeed, a lot of criticism of Java is IMO deeply misplaced—but that
doesn’t mean there’s nothing wrong with Java!

Disclaimer

What is it?

• That runs on virtual machines

• To be specific, the Java VM, and JavaScript VMs

• Defined by a specification

• With a syntax that looks conventional but is actually very flexible

• With an extremely powerful and elegant type system

• With built-in modularity

• With its own language module and SDK

• And excellent tooling

A programming language:

What is it?

• On Java SE, with the Ceylon module runtime

• In any OSGi container: Eclipse, Apache Felix, WildFly, GlassFish, …

• On Vert.x

• On Node.js

• In a web browser, with Common JS Modules (require.js)

• In a Java servlet engine, via ceylon war (in the next release)

Where it runs:

What about interop?

• It can be used to build a cross-platform module that executes in
both virtual machine environments, depending only on other cross-
platform modules written in pure Ceylon

• Or, it can be used to write a module that targets only one of the two
virtual machines and interoperates with native Java or JavaScript
code for that platform

• Interoperation with JavaScript is via dynamic typing, or via writing
an interface in Ceylon that ascribes static types to the JS API

Interoperable with native code

A few unique things

• Designed for multiplatform use—the language and language module
completely abstract the details of the virtual machine

• Reified generics, along with a typesafe metamodel that provides
access to generic type arguments at runtime

• Union and intersection types—the foundation for unambiguous type
inference and flow-sensitive typing

• Representation and abstraction of function and tuple types within
the type system—without an explosion of single-method interface
types or Function1, Function2, Function3, …

• A simple, unified type system, with elegant syntax sugar that helps
reduce verbosity without harming readability

Some unique things about Ceylon

Idiom #1

Idiom: functions with multiple outcomes
For example, an operation might return a File, a Url, or nothing:

We can handle the different outcomes using instanceof, type casts, and catch:

//Java
Object parsePath(String path)
 throws SyntaxException { ... }

try {
 Object result = parsePath(path);
 if (result instanceof File) {
 File file = (File) result;
 return lines(file);
 }
 if (result instanceof Url) {
 Url url = (Url) result;
 return new Request(url).execute().getContent().getLines();
 }
}
catch (SyntaxException se) { return emptyList(); }

Idiom #1

Idiom: functions with multiple outcomes
A function with more than one “outcome” can be defined using a union type.

We can handle the various outcomes using switch:

File|Path|SyntaxError parsePath(String path) => ... ;

value result = parsePath(name);
switch (result)
case (is File) {
 return lines(result);
}
case (is Url) {
 return Request(result).execute().content.lines;
}
case (is SyntaxError) {
 return {};
}

Idiom #1

Idiom: functions with multiple outcomes
We can aggregate cases using union:

Or, alternatively, using if instead of switch:

value result = parsePath(name);
switch (result)
case (is File|Url) {
 ...
}
else {
 ...
}

if (is File|Url result
 = parsePath(name)) {
 ...
}

Idiom #2

Idiom: functions returning null
Example: retrieve an item from a map.

(Nothing more than a special case of multiple outcomes!)

Here Item? literally means Null|Item.

For a union type of this very common form, we have special syntax sugar.

Item? get(Key key) => ... ;

value map = HashMap { “CET”->cst, “GMT”->gmt, “PST”->pst };

Timezone tz = map[id]; //not well-typed!
value offset = map[id].rawOffset; //not well-typed!

Timezone? tz = map[id];
value offset = (map[id] else gmt).rawOffset;

Idiom #3

Idiom: heterogeneous collections
What is the type of a list containing Integers and Floats?

The element type is ambiguous, so I must be explicit.

Even then I lose some information.

//Java
List<Number> list = Arrays.asList(1, 2, 1.0, 0.0);

Number element = list.get(index);
//handle which the subtypes of Number?
//don't forget that an out of bounds
//index results in an exception

Idiom #3

Idiom: heterogeneous collections
With union and intersection, type inference is unambiguous!

The inferred element type is Integer|Float, resulting in the inferred type
ArrayList<Integer|Float>, which is a subtype of any type to which the ArrayList

may be soundly assigned.

No loss of precision!

value list = ArrayList { 1, 2, 1.0, 0.0 };

Integer|Float|Null element = list[index];
//now I know exactly which cases I have to handle

Idiom #4
Idiom: unions and streams

Example: the follow() method of Iterable adds an element to the start of a stream.

The syntax {T*} and {T+} is sugar for the interface Iterable.

Exactly the right type pops out automatically.

(Even though I’m explicitly writing in the types, I could have let them be inferred.)

{Element|Other+} follow<Other>(Other element)
 => { element, *this };

{String*} words = { “hello”, “world” };
{String?+} strings = words.follow(null);

Idiom #5
Idiom: intersections and streams

Example: the coalesce() function eliminates null elements from a stream.

Again, exactly the right type pops out automatically.

(Again, I could have let the types be inferred.)

{Element&Object*} coalesce<Element>({Element*} elements)
 => { for (e in elements) if (exists e) e };

{String?*} words = { “hello”, null, “world” };
{String*} strings = coalesce(words);

Idiom #6
Idiom: empty vs nonempty

Problem: the max() function can return null, but only in the case that the stream
might be empty. So let's try this:

What if we know it’s nonempty at compile time? Do we need a separate function?

Terrible! This doesn’t let us abstract.

shared Value? max<Value>({Value*} values)
 given Value satisfies Comparable<Value> { ... }

shared Value maxNonempty<Value>({Value+} values)
 given Value satisfies Comparable<Value> { ... }

Idiom #6
Idiom: empty vs nonempty

Solution: the Iterable type has an extra type parameter:

Exactly the right type pops out automatically. (And may be inferred.)

shared Absent|Value max<Value,Absent>(Iterable<Value,Absent> values)
 given Value satisfies Comparable<Value>
 given Absent satisfies Null { ... }

Null maxOfNone = max {}; //known to be empty
String maxOfSome = max { “hello”, “world” }; //known to be nonempty

{String*} noneOrSome = ... ;
String? max = max(noneOrSome); //might be empty or nonempty

Idiom #7

Idiom: multiple return values
For example, an operation might return a Protocol and a Path.

We have to define a class.

//Java
class ProtocolAndPath { ... }

ProtocolAndPath parseUrl(String url) {
 return new ProtocolAndPath(protocol(url), path(url));
}

Idiom #7

Idiom: multiple return values
A function can be defined to return a tuple type.

Now a caller may extract the individual return values:

What about other indexes?

[Protocol,Path] parseUrl(String url)
 => [protocol(url), path(url)];

value protocolAndPath = parseUrl(url);
Protocol name = protocolAndPath[0];
Path address = protocolAndPath[1];

Null missing = protocolAndPath[3];
Protocol|Path|Null val = nameAndAddress[index];

Idiom #8
Idiom: spreading tuple return values

Imagine we want to pass the result of parseUrl() to another function

We can use the spread operator, *, like in Groovy:

Or we can work at the function level, using unflatten()

There is a deep relationship between function types and tuple types.

Response get(Protocol name, Path address) => ... ;

value response = get(*parseUrl(url));

Response(String) get = compose(unflatten(get), parseUrl);
value response = get("http://ceylon-lang.org");

Idiom #9
Idiom: abstract over function types

Problem: the compose() function composes functions.

But this is not quite as general as it could be!

For functions with just one parameter it works well:

What about functions with multiple parameters?

X(A) compose<X,Y,A>(X(Y) x, Y(A) y)
 => (A a) => x(y(a));

Anything(Float) printSqrt = compose(print,sqrt);

value printSum = compose(print,plus);

Idiom #9
Idiom: abstract over function types

Solution: abstract over unknown tuple type.

A little uglier, but does the job!

Even if this doesn't seem that useful at first sight, we actually use it in all sorts of
places: for example, in the metamodel, and in ceylon.promise

X(*Args) compose<X,Y,Args>(X(Y) x, Y(*Args) y)
 given Args satisfies Anything[]
 => flatten((Args args) => x(y(*args)));

Anything(Float,Float) printSum = compose(print,plus);

