Ceylon at Jfokus

Gavin King - Red Hat
profiles.google.com/gavin.king

ceylon-lang.org

http://profiles.google.com/gavin.king

We're fans of Java

Disclaimer

If | sound critical of Java (or any other language) in this presentation
It's merely to identify problems that require solutions

Indeed, a lot of criticism of Java is IMO deeply misplaced—but that
doesn’t mean there’s nothing wrong with Java!

What is it?

A programming language:
That runs on virtual machines
To be specific, the Java VM, and JavaScript VMs
Defined by a specification
With a syntax that looks conventional but is actually very flexible
With an extremely powerful and elegant type system
With built-in modularity
With its own language module and SDK

And excellent tooling

What is it?

Where it runs:
On Java SE, with the Ceylon module runtime
In any OSGi container: Eclipse, Apache Felix, WildFly, GlassFish, ...
On Vert.x
On Node.|s

In a2 web browser, with Common JS Modules (require.js)

In a Java servlet engine,via ceylon war (in the next release)

What about interop?

Interoperable with native code

t can be used to build a cross-platform module that executes in
pboth virtual machine environments, depending only on other cross-
platform modules written in pure Ceylon

Or, it can be used to write a module that targets only one of the two
virtual machines and interoperates with native Java or JavaScript
code for that platform

Interoperation with JavaScript is via dynamic typing, or via writing
an interface in Ceylon that ascribes static types to the JS API

A few unique things

Some unique things about Ceylon

Designed for multiplatform use—the language and language module
completely abstract the details of the virtual machine

Reified generics,along with a typesafe metamodel that provides
access to generic type arguments at runtime

Union and intersection types—the foundation for unambiguous type
inference and flow-sensitive typing

Representation and abstraction of function and tuple types within
the type system—without an explosion of single-method interface
types or Functionl, FunctionZ, Function3,...

A simple, unified type system, with elegant syntax sugar that helps
reduce verbosity without harming readability

Idiom #1

Idiom: functions with multiple outcomes

For example, an operation might return a File, a Url, or nothing:

//Java
Object parsePath(String path)
throws SyntaxException { ... }

We can handle the different outcomes using instanceof, type casts,and catch:

try {
Object result = parsePath(path);
1f (result instanceof File) {
File file = (File) result;
return lines(file);
ks
1f (result instanceof Url) {
Url url = (Url) result;
return new Request(url).execute().getContent().getlLines();
¥

h
catch (SyntaxException se) { return emptylList(); }

Idiom #1

Idiom: functions with multiple outcomes

A function with more than one “outcome” can be defined using a union type.

FilelPathlSyntaxError parsePath(String path) => ... ;

We can handle the various outcomes using switch:

value result = parsePath(name);
switch (result)
case (1s File) {
return 1ines(result);
¥
case (i1s Url) {
return Request(result).execute().content.lines;
¥
case (1s SyntaxError) {
return {};

h

Idiom #1

Idiom: functions with multiple outcomes

We can aggregate cases using union:

value result = parsePath(name);
switch (result)
case (1s FilelUrl) {

¥

else {

¥

Or, alternatively, using if instead of switch:

1f (1s FilelUrl result
= parsePath(name)) {

Idiom #2

Idiom: functions returning null

Example: retrieve an item from a map.

(Nothing more than a special case of multiple outcomes!)
Ttem? get(Key key) => ... ;
Here Item? literally means NulllItem.

value map = HashMap { “CET”->cst, “GMT”->gmt, “PST”->pst };

Timezone tz = map[id]; //not well-typed!
value offset = map[id].rawOffset; //not well-typed!

Timezone? tz = map[id];
value offset = (map[id] else gmt).rawOffset;

For a union type of this very common form, we have special syntax sugar.

Idiom #3

Idiom: heterogeneous collections

What is the type of a list containing Integers and Floats?

//Java
List<Number> 1list = Arrays.aslList(l, 2, 1.0, 0.0);

The element type is ambiguous, so | must be explicit.

Even then | lose some information.

Number element = list.get(index);
//handle which the subtypes of Number?
//don't forget that an out of bounds
//1ndex results in an exception

Idiom #3

Idiom: heterogeneous collections

With union and intersection, type inference is unambiguous!

value list = ArraylList { 1, 2, 1.0, 0.0 };

The inferred element type is Integer|Float, resulting in the inferred type
ArraylList<Integer|Float>, which is a subtype of any type to which the ArrayList
may be soundly assigned.

No loss of precision!

Integer|Float|Null element = list[index];
//now I know exactly which cases I have to handle

Idiom #4

Idiom: unions and streams

Example: the follow() method of Iterable adds an element to the start of a stream.

{Element|0ther+} follow<Other>(0ther element)
=> { element, *this };

The syntax {T*} and {T+} is sugar for the interface Iterable.

Exactly the right type pops out automatically.

{String*} words = { “hello”, “world” };
{String?+} strings = words.follow(Cnull);

(Even though I'm explicitly writing in the types, | could have let them be inferred.)

Ildiom #5

Idiom: intersections and streams

Example: the coalesce() function eliminates null elements from a stream.

{Element&0Object*} coalesce<Element>({Element*} elements)
=> { for (e 1n elements) 1f (exists e) e };

Again, exactly the right type pops out automatically.

{String?*} words = { “hello”, null, “world” };
{String*} strings = coalesce(words);

(Again, | could have let the types be inferred.)

Ildiom #6

Idiom: empty vs nonempty

Problem: the max() function can return null, but only in the case that the stream
might be empty. So let's try this:

shared Value? max<Value>({Value*} values)
given Value satisfies Comparable<Value> { ... }

What if we know it's nonempty at compile time? Do we need a separate function?

shared Value maxNonempty<Value>({Value+} values)
given Value satisfies Comparable<Value> { ... }

Terrible! This doesn’t let us abstract.

Ildiom #6

Idiom: empty vs nonempty

Solution: the Iterable type has an extra type parameter:

shared Absent|Value max<Value,Absent>(Iterable<Value,Absent> values)
given Value satisfies Comparable<Value>
given Absent satisfies Null { ... }

Exactly the right type pops out automatically. (And may be inferred.)

Null maxOfNone = max {}; //known to be empty
String maxOfSome = max { “hello”, “world” }; //known to be nonempty

{String*} noneOrSome = ... ;
String? max = max(noneOrSome); //might be empty or nonempty

Idiom #7

Idiom: multiple return values
For example, an operation might return a Protocol and a Path.
//Java
class ProtocolAndPath { ... }

ProtocolAndPath parseUrl(String url) {

return new ProtocolAndPath(protocol(url), pathCurl));
¥

We have to define a class.

Idiom #7

Idiom: multiple return values

A function can be defined to return a tuple type.

[Protocol,Path] parseUrl(String url)
=> [protocol(url), pathCurl)];

Now a caller may extract the individual return values:

value protocolAndPath = parseUrl(url);
Protocol name = protocolAndPath[Q];
Path address = protocolAndPath[1];

What about other indexes?

Null missing = protocolAndPath[3];
Protocol |PathINull val = nameAndAddress[index];

Ildiom #8

Idiom: spreading tuple return values

Imagine we want to pass the result of parseUr1() to another function

Response get(Protocol name, Path address) => ... ;

We can use the spread operator, *, like in Groovy:
value response = get(*parseUrl(url));
Or we can work at the function level, using unflatten()

Response(String) get = compose(unflatten(get), parseUrl);
value response = get("http://ceylon-lang.org");

There is a deep relationship between function types and tuple types.

Ildiom #9

Idiom: abstract over function types

Problem: the compose() function composes functions.

X(CA) compose<X,Y,A>(X(Y) x, YCA) y)
=> (A a) = x(y(a));

But this is not quite as general as it could be!

For functions with just one parameter it works well:

Anything(Float) printSqrt = compose(print,sqrt);

What about functions with multiple parameters?

value printSum = compose(print,plus);

Ildiom #9

Idiom: abstract over function types

Solution: abstract over unknown tuple type.

X(*Args) compose<X,Y,Args>(X(Y) x, Y(*Args) y)
given Args satisfies Anything[]
=> flatten((Args args) => x(y(*args)));

A little uglier, but does the job!

Anything(Float,Float) printSum = compose(print,plus);

Even if this doesn't seem that useful at first sight, we actually use it in all sorts of
places: for example, in the metamodel, and in ceylon.promise

