
Everything You Wanted to 

Know 

About Writing Async, 

Concurrent HTTP Apps in Java 



Agenda 

• Mostly this: 



Agenda 

• And this: 



Agenda 

• And this: 



About your speaker 

linkd.in/jbaruch 

stackoverflow.com/users/402053/jbaruch 



What Frog? 



What Frog? 



What Frog? 



What Frog? 







Requirements 

–  parallel file Downloads 

–  Parallel file parts 

–  interrupt/pause/resume 

–  Progress events 

–  Checksums caching 



First Association for “concurrent 

downloader” 





Lucky day: Download manager 

written in Java! 





Let’s look if we can use it! 

1. No traceable license 

2. No website or docs 

3. No traceable sources 

4. It’s an app, not a lib 







Java.net.urlconnection 

1. Memory wasteful (buffering) 

2. Minimal API 

3. Blocking streams 





What we’re looking for 

1. Async/non-blocking 

2. Event callbacks 

 



What is IT going to take 

1. Reactor 

2. nio 



Welcome to the reactor 



– pattern for lightweight concurrency 

– Event driven 

– Threads reuse 

– Uses non-blocking Io 



Original pattern 

http://www.dre.vanderbilt.edu/~schmidt/PDF/reactor-siemens.pdf 



Guess the author by the 

diagram 

http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf 



In Java, Reactor 
means NIO 



Selector as a multiplexer 



Java version - Registering 

SocketChannel channel= SocketChannel.open(); 

socketChannel.connect(new 

    InetSocketAddress("http://remote.com", 80)); 

... 

Selector selector = Selector.open(); 

channel.configureBlocking(false); 

SelectionKey k = channel.register(selector, 

SelectionKey.OP_READ); 

k.attach(handler); 

 



Java version - Dispatcher 

while (!Thread.interrupted()) { 

selector.select(); 

Set selected = selector.selectedKeys(); 

Iterator it = selected.iterator(); 

while (it.hasNext()) 

  SelectionKey k = (SelectionKey)(it.next(); 

  ((Runnable)(k.attachment())).run(); 

  selected.clear(); 

} 



Handling reactor events is complex 

– Need to maintain state 

– Buffering – assembling chunks 

– Coordinating async events 

 

 





Nio libraries 

– Most of them are servers 

– Netty, grizzly, etc. 

– Apache Mina 

– Apache HTTP components asyncclient  

– Ning http client 



Nio libraries 

– Most of them are servers 

– Netty, grizzly, etc. 

– Apache Mina 

– Apache HTTP components asyncclient  

– Ning http client 



– Client and server nio library 

– Evolved from netty 

– Latest release October 2012  

 





Nio libraries 

– Most of them are servers 

– Netty, grizzly, etc 

– Apache Mina 

– Apache HTTP components asyncclient  

– Ning http client 





Ning’s async http client 







Here it is! 



try (AsyncHttpClient asyncHttpClient = new AsyncHttpClient()) { 

    ListenableFuture<Response> future = asyncHttpClient.prepareGet( 

            "http://oss.jfrog.org/api/system/ping").execute( 

            new AsyncCompletionHandler<Response>() { 

                @Override 

                public Response onCompleted(Response response) { 

                    System.out.println(response.getResponseBody()); 

                    return response; 

                } 

 

                @Override 

                public void onThrowable(Throwable t) { 

                    t.printStackTrace(); 

                } 

            }); 

    Response response = future.get(); 

} 





HAC Concepts 

– Request producer 

– Response consumer 



try	(CloseableHttpAsyncClient	asyncHttpClient	=	HttpAsyncClients.createDefault())	{	
				asyncHttpClient.start();	
				Future<HttpResponse>	future	=	asyncHttpClient.execute(	
												HttpAsyncMethods.createGet("http://oss.jfrog.org/api/system/ping"),	
												new	AsyncByteConsumer<HttpResponse>()	{	
	
																@Override	
																protected	void	onResponseReceived(final	HttpResponse	response)	{	
																				System.out.println(response.getStatusLine().getReasonPhrase());	
																}	
	
																@Override	
																protected	void	onByteReceived(final	CharBuffer	buf,	final	IOControl	ioctrl)	{	}	
	
																@Override	
																protected	void	releaseResources()	{	}	
	
																@Override	
																protected	HttpResponse	buildResult(final	HttpContext	context)	{	
																				return	(HttpResponse)	context.getAttribute("http.response");	
																}	
	
												},	null);	
			HttpResponse	response	=	future.get();	
}	





Choosing between ning and http 

asyncclient 



"All problems in computer science can 

be solved by another level of 

indirection" 
David 

Wheeler 



public interface HttpProviderDownloadHandler { 
 
    void onResponseReceived(int statusCode, Map<String, List<String>> headers); 
 
    boolean onBytesReceived(ByteBuffer buf); 
 
    void onFailed(Throwable error); 
 
    void onCanceled(); 
 
    void onCompleted(); 
} 



Head to head 

Feature/Library Ning client Http Async Client 

Maturity Good Very new (early 2014) 

Download cancelation Easy With bugs 

Progress hooks Events not granular 
enough 

Just use onByteReceived() 

Documentation A bit sparse Minimal 

Server-side counterpart None, client only org.apache.httpcomponents 
httpcore-nio 



Performance? 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

Small file Medium file Large file 

Ning 

AHAC 

http://blogs.atlassian.com/2013/07/http-client-performance-io/ 



Rfc2616: a universe of its own 





Confused? 



Just read some stackoverflow 

(and improve your rep as you go) 



And that one for 
discovering that 
range header is 
lost on redirect 



Question! 

What should be 

content-length 

when using 

compression? 







https://github.com/http2/http2-spec/issues/46 



Question! 

Why when redirected to CDN 
all the chunks start from zero? 



HttpAsyncClientBuilder builder = HttpAsyncClients.custom(); 
// add redirect strategy that copies "range" headers, if exist 
builder.setRedirectStrategy(new DefaultRedirectStrategy() { 
 @Override 
 public HttpUriRequest getRedirect(HttpRequest request, HttpResponse response,  
  HttpContext context) 
 HttpUriRequest redirectRequest = super.getRedirect(request, response, context); 
 // copy "Range" headers, if exist 
 Header[] rangeHeaders = request.getHeaders(HttpHeaders.RANGE); 

 if (rangeHeaders != null) { 
  for (Header header : rangeHeaders) { 
   redirectRequest.addHeader(header); 
  } 
 } 
 return redirectRequest; 
}}); 



Question! 

How many simultaneous 

connections should I open? 











Question! 

What’s wrong 

with the 

following 

code? 



public static String encodeUrl(String urlStr)  { 
    URLEncoder.encode(urlStr, "UTF-8"); 
    ... 
} 



Decoded URLs cannot be 

re-encoded to the same form 

http://example.com/?query=a&b==c 
 
Cannot be decoded back after it was 
encoded: 
 
http://example.com/?query=a%26b==c 
 

http://example.com/?query=a&b==c
http://example.com/?query=a&b==c
http://example.com/?query=a&b==c
http://example.com/?query=a&b==c
http://example.com/?query=a&b==c
http://example.com/?query=a&b==c


Don’t use java.net.URLEncoder  

“Utility class for HTML form encoding. 
This class contains static methods for 
converting a String to the 
application/x-www-form-urlencoded 
MIME format. 

For more information about HTML 
form encoding, consult the HTML 
specification.” 



AHC Alternatives 





Question! 

How do I 

close a 

socket 

correctly? 



How hard can it be to close a 

socket? 



The art of socket closing 

http://www.safaribooksonline.com/library/view/http-the-definitive/1565925092/ch04s07.html 



Half-closed: no new customers 



Never block in socket close() 

• The other side expects you 

to clean up nicely 

• It will give up on time out 

• You will wait (forever) 

 





Remember? 



Question! 

How can I write 

file parts 

concurrently? 



– Write to separate files, combine on finish 

– Write to same file, seeking to the right position 







Use FileChannel 

• Implements SeekableByteChannel 

java.nio.channels.FileChannel#write( 
        java.nio.ByteBuffer src, long position) 



Download progress tracking 

• PersistentFileProgressInfo 
– Save the total size, sha1, number of parts 

– State of each part (offset, size, completed...) 

FileProgressInfo FilePartProgressInfo 
* 



File Locking 



File locking Levels 

– VM level 

– OS level 



OS level File locking 

• Multiple downloader instances writing to 

the same file 

• Needed for writing: 

– Partial download file 

– Persistent download progress 



FileLock lock = fileChannel.tryLock(); 
                //Non-shared: (0L, Long.MAX_VALUE, false)  
    if (lock == null) { 
        throw new OverlappingFileLockException(); 
    } 
    return lock; 
} 

OS Level File Locking - 

Exclusive 



private FileLock lock(FileChannel fileChannel) throws IOException { 
    FileLock lock = fileChannel.tryLock(Long.MAX_VALUE - 1, 1, false); 
    if (lock == null) { 
        throw new OverlappingFileLockException(); 
    } 
    return lock; 
} 

OS Level File Locking – 

Advisory exclusive 

WTF?! 



VM Level File Locking 



VM Level File Locking 

– Prevent same VM threads writing to the file when we started closing it 

– Closing sequence: 
– Release file locks 

– Close channels 

– Rename a file to it's final name (remove .part) 

– Erase progress info 

 



VM Level File Locking 
ReentrantReadWriteLock.ReadLock writeToFileLock = rwl.readLock(); 
ReentrantReadWriteLock.WriteLock closeFileLock = rwl.writeLock(); 
 
public void close() throws IOException { 
        this.closeFileLock.lock(); 
} 
 
public int write(int partIndex, ByteBuffer buf) { 
    if (!this.writeToFileLock.tryLock()) { 
        throw new IllegalStateException("File is being closed"); 
    } 
    ... 
} 



What’s next? 



http/2 

– Mostly standardizing Google's spdy 
– Header compression 

– multiplexing 

– Prioritization 

– Server push  

– On the way clear some stuff 
– E.g. compressed content length 



Ease the load 



Links! 

• RTFM: RFC 2616 

• Ultimate book: HTTP: The Definitive 

Guide 

– Amazon 

– Safari 

• Reactor pattern 

• Doug Lea on NIO 

http://www.w3.org/Protocols/rfc2616
http://www.amazon.com/HTTP-The-Definitive-Guide-Guides/dp/1565925092
http://www.safaribooksonline.com/library/view/http-the-definitive/1565925092/
http://jeewanthad.blogspot.co.il/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf


No, Thank you! 


