MethodHandle compilation
pipeline

A detailed look at J9's approach to MethodHandle compilation

Dan Heidinga, J9 Virtual Machine Team Lead
@DanHeidinga
2015-02-02

Important disclaimers

= THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

= WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED.

» ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR
INFRASTRUCTURE DIFFERENCES.

= ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

= I[N ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM'S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

= |[BM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE
USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

= NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

— CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR
THEIR SUPPLIERS AND/OR LICENSORS

Who am 1?

I've been involved with virtual machine development at IBM since
2007 and am now the J9 Virtual Machine Team Lead. J9 is IBM's
independent implementation of the JVM.

I've represented IBM on both the JSR 292 (‘invokedynamic') and
JSR 335 ('lambda') expert groups and lead J9's implementation of
both JSRs.

| also maintain the bytecode verifier and deal with various other
parts of the runtime.

._ a - W S - [EJ = g
S [=] MethodHandle (Jav: xt? -

€& - C | [} docs.oraclecom/javase/8/docs/api/java/lang/invoke/MethodHandle html#invoke-java.lang.Object...-

java.lang.invoke

Class MethodHandle

java.lang.Object
java.lang.invoke.MethodHandle

public abstract class MethodHandle
extends Object

A method handle is a typed, directly executable reference to an underlving method, constructor, field, or similar low-level
operation, with optional transformations of arguments or return values. These transformations are quite general, and
include such patterns as conversion, insertion, deletion, and substitution.

Method handle contents

Method handles are dynamically and strongly typed according to their parameter and return types. They are not
distinguished by the name or the defining class of their underlying methods. A method handle must be invoked using a
symbolic type descriptor which matches the method handle's own type descriptor.

Every method handle reports its type descriptor via the type accessor. This type descriptor is a MethodType object, whose
structure is a series of classes, one of which is the return type of the method (or void.class if none).

A method handle's type controls the types of invocations it accepts, and the kinds of transformations that apply to it.

A method handle contains a pair of special invoker methods called invokeExact and invoke. Both invoker methods
provide direct access to the method handle's underlying method, constructor, field, or other operation, as modified by
transformations of arguments and return values. Both invokers accept calls which exactly match the method handle's own
type. The plain, inexact invoker also accepts a range of other call types.

Method handles are immutable and have no visible state. Of course, they can be bound to underlying methods or data

ruthirh Arrhilie cfato T8TED racrnact o tha Tarrs Afarmanarrr Afadal ancr manthoad handla swurbdl] bhaharsrn ae §F A1l AF ire fintarmnall fHaldes

J9’'s MethodHandle hierarchy

= Original prototype had 1 class: MethodHandle
— “kind” field to determine which operation
— “type” field to hold the MethodType
— “vmSlot” field to hold the address, offset, vtable or itable index

= Grab bag of data necessary to support field access and method sends

= 2 major problems with this approach

Q
O
-
©
1
O
O
L
e
O,
=

"TH

Public domain.

MethodHandle

http://commons.wikimedia.org/wiki/File:MudBall03.jpg

J9’'s MethodHandle hierarchy

= Hierarchy that separates each MH kind into its own class
= Each MH subclass describes the data needed by the MH

» JITs look at the class rather than the ‘kind’ instance field
— Provides a place to put specialized behaviour

Q@
©
C
©
L
©
®)
N
—-—
()
=

DireCt -

{

Interface
FieldGetter

FieldSetter
T
= StaticFieldGetter

=
- Collect

- StaticFieldSetter
- Dynamiclnvoker

- FilterArguments
ArgumentConversion {
Convert {

AsType

ExpllchaSt

FilterReturn

ad GuardWithTestHnadle

FoldNonvoid

FoldVoid

-[
- InvokeExact

InvokeGeneric

ArgumentMover Ld BruteArgumentMover
PassThrough {

Catch
Il EH]
- Spread ‘W
[)

Al
VarargsCollector l} ‘
[

3
POy Toni
BY 2.0

o0zano - http://www.flickr.com/photos/quiero-un-pantano/176909201.
ikimedia Commons -
Jiki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad _chain_closeup.jp

MethodHandle chains

Direct

GuardWithTest Direct

Bozano - http://www.flickr.com/photos/quiero-un-pantano/176909201.
ikimedia Commons -
iki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad_chain_closeup.jp

MethodHandle chains

GuardWithTest

MethodHandle target

= gu ardwtthTESt(getGuard(}, getTarget[}, getFallback());
MethodHandle fallback =

HSErtArgumentS(getwéyt(}, , 1);

Bozano - http://www.flickr.com/photos/quiero-un-pantano/176909201.
ikimedia Commons -
iki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad_chain_closeup.jp

Dynamiclnvoker

F MethodHandle chains w

GuardWithTest [=8F" Etad GuardWithTest

'{T;fvu Insert Direct
"y

guardwi%hTESt(getGﬁard(}, getTarget(), getFallback());
= insertArguments(getNext(), @, 1);

MethodHandle target =
MethodHandle fallback

SwitchPoint point = new SwitchPoint();
MethodHandle switchPoint = point.guardWithTest(target, fallback);

ikimedia Commons -
iki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad_chain_closeup.jp

MethodHandle chains

Dynamiclnvoker Constantint

Dynamiclnvoker GuardWithTest [Gllf’ Clkd GuardWithTest

MethodHandle target

= gu GrdwtthTEEt(getGuard(}, getTarget(), getFallback());
MethodHandle fallback =

insertArguments(getNext(), @, 1);

SwitchPoint point = new SwitchPoint();
MethodHandle switchPoint = point.guardWithTest(targe allback);

':Zl

MutableCallSite mcs = new MutableCallSite(switchPoint);
MethodHandle invoker = mcs.dynamicInvoker();

@Bozano - http://www.flickr.com/photos/quiero-un-pantano/176909201.
ikimedia Commons -

iki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad_chain_closeup.jp

(Mostly) tail recursive MH interpreter

B
A< >D_,E_,F
Cc

m| =[N

>IN | =
O|ld | w|N|=
O(w| [N | =

13

ThunkTuples

= Every MethodHandle has a ThunkTuple.

= ThunkTuples hold onto the compiled code for the MethodHandle
— i2jInvokeExactThunk: interpreter to JIT entrypoint
— invokeExactThunk: JIT to JIT entrypoint

= Each ThunkTuple is generated from a bytecode template for the MethodHandle subclass

"MethodHandle) ThunkTuple) Compiled Code

invocationCount invocationCount

. thunks 7 i2jlnvokeExactThunk
KinvokeExactThunk \/

14

ThunkArchetypes: MethodHandle templates

@FrameIteratorSkip
private final int invokeExact thunkArchetype X(int argPlaceholder) {

if (ILGenMacros.invokeExact Z(guard, ILGenMacros.firstN(numGuardArgs(), argPlaceholder))) {
return ILGenMacros.invokeExact X(trueTarget, argPlaceholder);
} else {

return ILGenMacros.invokeExact X(falseTarget, argPlaceholder);
h
h

private static native int numGuardArgs();

= Signatures are written in terms of ‘int’ and edited at compile time

= Compile time macros are used to further specialize the code.
— ‘numGuardArgs()’ determines how many arguments are passed to the guard handle
— ILGenMacros.* are used to do signature editing, argument pushing and popping, etc

= This the MH equivalent of compiling a single ‘invokevirtual’ instruction
— Specialized just enough to get out of the interpreter and into compiled code

15

But that’s a lot of duplicate code!

16

"MethodHandle)

invocationCount

_ thunks /)

"MethodHandle)

invocationCount

" ThunkTuple)

invocationCount

_ thunks /)

"MethodHandle)

invocationCount

invokeExactThunIg

" ThunkTuple)

invocationCount

_ thunks /)

invokeExactThunlg

" ThunkTuple)

invocationCount

Compiled Code

/

Compiled Code

/

invokeExactThunIy

ompiled Code

/

Avoiding duplicate compiles of equivalent MHs

17

"MethodHandle)

invocationCount

_ thunks \

"MethodHandle)

invocationCount

_ thunks /)

“MethodHandle

invocationCo

_ thunks

" ThunkTuple)

invocationCount

invokeExactThunlg

Compiled Code

/

ThunkTables allow sharing

private static final ThunkTable _thunkTable = new ThunkTable();
protected final ThunkTable thunkTable(){ return _thunkTable; }

protected final ThunkTuple computeThunks(Object guardType) {
// Different thunks accommodate guards with different numbers of parameters
return thunkTable().get(
new ThunkKeyWithObject(
ThunkKey . computeThunkableType(type()),
ThunkKey . computeThunkableType ((MethodType)guardType)));

¥
= Every MethodHandle subclass has a ThunkTable

= ThunkTables manage the mapping from MethodHandle to ThunkTuple

= Goal: Good compiled code with a high degree of sharing.
— Stay out of the interpreter.
— Don’t waste code cache

18

Compilation states

19

Interpreted

Compilation states

20

Interpreted

SharedThunk

Compilation states

Interpreted

SharedThunk

/\

CustomThunk

21

Inlined

Initial JIT compilation

22

"MethodHandle)

invocationCount

Interpreted

SharedThunk

ThunkTuple
invocationCount

L thunks j

invokeExactThunb

Compiled Code

S

SharedThunk delays

23

"MethodHandle)

invocationCount

_ thunks —J

(Method Handle\

invocationCount

\ thunks —

"MethodHandle)

invocationCount

_ thunks p

24

ThunkTuple)

invocationCount |72
invokeExactThunb

= With a compile threshold of 25
= The SharedThunk is run interpreted 72 times

SharedThunk delays

24

"MethodHandle)

invocationCount

\ thunks —

(Method Handle\

invocationCount

\ thunks —

"MethodHandle)

invocationCount

_ thunks p

24

ThunkTuple)

invocationCount

invokeExactThunb

Compile"d Code

SR

73

SharedThunk delays resolved

"MethodHandle)

invocationCount| 9
_ thunks —J

"MethodHandle) ThunkTuple
invocationCount| 8 invocationCount |25
_ thunks — invokeExactThunk

"MethodHandle)

Compile"d Code

invocationCount
_ thunks p

S

25

Addressing the cost of J->| transitions

Compiled Code / MethodHandle) ThunkTuple)
invocationCount invocationCount

invokehandle/ . thunks 7 invokeExactThunk)

= On transition, request MethodHandle compile

= Continue in the jitted code rather than completing the transition

\/

26

Compilation states

Interpreted

SharedThunk

/\

CustomThunk

27

Inlined

Why CustomThunks?

29

"MethodHandle

"Method

invocationCount

_ thunks)

:

Compiléd Code

_

thunks

Handle

"MethodHandle

invocationCount

J

:

Compilé

d Code

invocationCount
_ thunks)

Compile"d Code

Why CustomThunks?

30

"MethodHandle

"MethodHandle

"MethodHandle

invocationCount

invocationCount

_ thunks)

'
Compiled Code

g

invocationCount

thunks

. J

thunks

. J

Invocation counts are not enough

31

Invocation counts are not enough

32

Invocation counts are not enough

33

Invocation counts are not enough

34

||”||||
b
””n“

Invocation counts are not enough

35

s
||||||1|

Invocation counts are not enough

Wasted compiles

36 [l

"Brisbane Lightening" by Steve Arnold - http://www.flickr.cd

n/photos/stevoarnold/3161660942.
Licensed under Attribution 2.0 Generic CCBY 2.0 <\

“. =

R LU LT TN TYRT 1L TLITLALLAREANE

Avoiding compile storms

38 [Jm]|

Avoiding compile storms

39 [l

Avoid MethodHandles.invoke()
' . T e

/ B = p g
/ [=) MethodHandle (Jave x — pa—
€ - C' [} docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandle.html#invoke-java.lang.Object...- =
‘ Fs
invoke

public final Object invoke(Object... args)
throws Throwable

Invokes the method handle, allowing any caller type descriptor, and optionally performing conversions on arguments
i and return values.

If the call site's symbolic type descriptor exactly matches this method handle's type, the call proceeds as if by
invokeExact.

Otherwise, the call proceeds as if this method handle were first adjusted by calling asType to adjust this method D
handle to the required type, and then the call proceeds as if by invokeExact on the adjusted method handle.

There is no guarantee that the asType call is actually made. If the JVM can predict the results of making the call, it
i may perform adaptations directly on the caller's arquments, and call the target method handle according to its own
eXact type.

The resolved type descriptor at the call site of invoke must be a valid argument to the receivers asType method. In
particular, the caller must specify the same argument arity as the callee's type, if the callee is not a variable arity
collector.

When this method is observed via the Core Reflection AFI, it will appear as a single native method, taking an ohject
array and returning an object. If this native method is invoked directly via java.lang.reflect.Method. invoke, via
JNI, or indirectly via Lookup.unreflect, it will throw an UnsupportedOperationException.

Parameters:
args - the signature-polymorphic parameter 1ist, statically represented using varargs

docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandle html#invoke-java.lang.Object...- -

Avoid MethodHandles.invoke()

= Counting occurs on the AsType handle, not the head of the chain

= AsType from multiple signatures defeats one-element cache solution

41

s
[iy
[l
[l

o R d
i i}
C™ ol) . . Rt
et _ a1 N
“ - 4!
) e
mi.!- ! v
‘ i .
.
!

E%-Eﬁ;,r

2T
Rt S

Y ‘: W " ! \ " "

{ R i
i R \

.w,*_:.-\!"“ '\,« T ‘\““\ W

" M‘\‘ﬂ,) Bt 4 ‘l bt Ay m;w *‘I“Y
A ! N Wy i
PR

i

Super bytecodes!

Static optimizations

Drop_Constant

Permute Permute_, F

Insert Permute Drop AsType

44

Constant

Permute , F

ArgumentMoverHandle

Future directions

= AOT SharedThunks

= Additional “super handles” like drop+constant
= AsType optimizations

= Faster / smaller MethodHandle compiles

= UNB PhD candidate looking at data mining MH chains from existing applications

J)

UNB

UNMIVERSITY OF
NEW BRUNSWICK

45

| .
Meet IBM at Jfokus! &

IBM Bluemix™

Sign up for Bluemix and
you might win a GoPro
Hero 4 Black Adventure
Edition.

Sign up here: ibm.biz/bluemix-jfokus

» . Follow us on Twitter
Winner will be found at IBM’s booth @IBMBluemix
4th of February at 15.00

Make Your Day
CHALLENGE

: : | Event by
is coming soon! B
Pre-signup at vaadin.com/challenge IBM Bluemix

IBM G]Obal IBM Global Entrepreneur offer Startups resources including free software
and technical experts, exposure to 600+ expert mentors, plus access to a
Entrepreneur global network of clients.
Also eligible startups can apply for getting between 1 K USD to 10 K USD a
Program month credits for 12 months on their Softlayer and/or Bluemix account

IBM Global Entrepreneur Program
Sign up here: jbm.com/isv/startup ()

Go-to-market support

IBM Global Entrepreneur Program
for Cloud Startups — apply for
cred itS Business mentoring
Sign up here: ibm.biz/CloudStartup

IBM Analytics Starter Program il oapis
Sign-up here:
ibm.biz/analyticsstarter

http://www.ibm.com/isv/startup
ibm.biz/CloudStartup
ibm.biz/analyticsstarter

