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“ Pull vs Pusn

* Push streams
 Backpressure is something you need to design
* More intuitive control tlow (imperatively)

* Pull streams
* Concurrency doesn't exist

e More declarative control, which can be weird



Concepts

+ Task[A]

e | Ike Future, but more controlled

- Process[Task, Al

e A strict sequence of actions

(
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Concepts: Task

Fully lazy

* Creating a Future executes immediately
* No more memory leaks!

Easy to move tasks between thread pools
Better thread utilization

Explicit parallelism



def fib(n: Int): Task[Int] = n match {
case O | 1 => Task now 1
case n => {
for {
x <— fib(n - 1)
y <— fib(n - 2)
y yield x + vy
¥
s

fib(42).run



def fib(n: Int): Task[Int] = n match {
case @ | 1 => Task now 1
case n => {
val ND = Nondeterminism|[Task]

for {
pair <— ND.both(fib(n - 1), fib(n - 2))
(x, y) = pair
y yield x + vy
I3
¥

fib(42).run



def shiftPool[A] (task: Task[A]): Task[A] =
Task({ task })(MyThreadPool).join



def shiftPool[A] (task: Task[A]): Task[A] =
Task.fork(task) (MyThreadPool)



def futureToTask[A]l(f: Future[A]l): Task[A] = {
Task async { cb =>
f onComplete {
case Success(v) => cb(\/.right(v))
case Failure(e) => cb(\/.left(v))
I3
I3
I3



def futureToTask[A](f: Futurel[A]):

Task async { cb =>
f onComplete {

case Success(v) =

case Failure(e)

}
}
}

Task [A]




Concepts: Process

An ordered sequence of actions

Ask for an action...then the next...then the next

e |f you can't keep up, you ask less frequently
Easy to merge (just ask for data from either "side")

Explicit parallelism



def fetchUrl(num: Int): Task[String] = {
val fetch: Task[Task[String]] = Task delay {
val svc = url(s"http://api.stuff.com/record/$num")
Task fork futureToTask(Http(svc OK as.String))

}

fetch.join

}



val nums: Process|[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ *x 2 } filter { _ < 10 }

val pages = adjusted flatMap { num =>
Process.eval(fetchUrl(num))

I3

val found = pages find { _ contains "Waldo!" }

val stuff: Task[Unit] = found to io.stdOutLines run

stuff.run



Process.range(0, 10)
Process.range(11, 20)

val numsl: Process[Task, Int]
val nums2: Process|[Task, Int]

val nums: Process[Task, Int] = numsl interleave nums2



val 1 = new AtomicInteger

val read = Task delay {
i.getAndIncrement()

I3

val src = Process.eval(read).repeat

val left = src map { i => s"left: $i" }
val right = src map { i => s"right: $i" }

left interleave right to 1o.stdOutLines
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// bounded queues are for wimps...



// bounded queues are for wimps...
val queue = new ArrayBlockingQueue[Message] (10)

// looks like I'm a wimp
val read: Task[Message]l = Task delay { queue.take() }

val src: Process[Task, Message] =
Process.eval(read).repeat



val queue = async.blockingQueue[Message] (10)

val src: Process[Task, Message]l = queue.dequeue
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Sinks

 Data has to go somewhere
* Writing out to a channel

e Writing to disk

e _..or all of the above
 What is a sink anyway”

e A stream of functions!



type Sink[F[_], Al = Process[F, A => F[Unit]]



def write(str: String): Task[Unit] =
Task delay { println(str) 7}

val sink: Sink[Task, String]l = Process.constant(write _)
val src = Process.range(0, 10) map { _.toString }

val results = src zip sink flatMap {
case (str, f) => Process eval f(str)

¥

val universe: Task[Unit] = results.run



val stdOut: Sink[Task, String] = ...
val channel: Sink[Task, String] = ...

val src = Process.range(0, 10) map { _.toString }

val results = src zip stdOut zip channel flatMap {
case ((str, f1), f2) => {
for {
<— Process eval f1(str)
_ <— Process eval f2(str)
} yield ()
}
}

val universe: Task[Unit] = results.run



val stdOut: Sink[Task, String] = ...
val channel: Sink[Task, String] = ...

val src = Process.range(0, 10) map { _.toString }
val results = src observe stdOut to channel

val universe: Task[Unit] = results.run



def debug[A] (stream: Process|[Task, A]): Process[Task, A] =
stream map { a => s'"debug: $a" } observe io.stdOutLines



Concurrency
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Concurrency

* Always explicit!
e [wo forms of parallelism

* Racing two streams into one

* [urning a stream "sideways’

* Almost everything implemented on top of wye









val left: Process[Task, Message] = ...

val right: Process|[Task, Message] = ...

val merged: Process|[Task, Message] =
left.wye(right) (wye.merge)



val left: Process[Task, Message] = ...
val right: Process|[Task, Message] = ...

val merged: Process|[Task, Message] =
left merge right // should be "race"



val left: Process[Task, Message] = ...
val right: Process[Task, Line] = ...

// oh NOES! teh symbols cometh!
val merged: Process|[Task, Message \/ Line] =
left either right
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Useful wyes

- wye.merge

- wye.elither
» wye.1lnterrupt
* wye.drainL / wye.drainR

e Doesn't work!
























val nums: Process|[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ x 2 } filter { _ < 10 }

val pages = adjusted flatMap { num =>
Process.eval(fetchUr1l(num))
I



val nums: Process|[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ x 2 } filter { _ < 10 }

val pages: Process[Task, Task[Stringl] =
adjusted map { num =>
fetchUrl(num)

}

val parallel: Process|[Task, String] =
pages.gather(4)
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Causes DEADLOCK on infinite streams



gather(n)

Grabs chunks of n and parallelizes
Last chunk of stream may be truncated
Great for finite streams!

Causes DEADLOCK on infinite streams

 Don't use it you source from a queue!



val nums: Process|[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ x 2 } filter { _ < 10 }

val pages: Process[Task, Process[Task, String]] =
adjusted map { num =>
Process.eval(fetchUrl(num))

}

val parallel: Process|[Task, String] =
merge.mergeN(pages)
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merge.mergeNn

A little weirder to use...

* Process of Process

Uses a variable bounded gueue
Races all input streams

e Uptonatatime

Almost always what you really want
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Chat Server

* Uses scalaz-netty project
e Currently closed-source, but OSS soon™!
 Would also work with scalaz-nio

* Uses scodec
 Usethis. Use it. It's amazing.

 Demonstrates the power of Process abstraction
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Server

Accept connections asynchronously

e ...and in parallell

Pipe inbound data to a relay queue

Pipe relay gueue into the outbound channel

Continue until client closes connection



val address: InetSocketAddress = 777
val relay = async.topic[BitVector]

val handlers = Netty server address map { client =>

for {
Exchange(src, sink) <- client

in = src to relay.publish
out = relay.subscribe to sink

_ <— 1n merge out
} yield ()
¥

val server: Task[Unit] = merge.mergeN(handlers).run
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Client

Establish connection
Pipe standard input to the server (as UTF-8)
Pipe server response to standard output

Continue until user fail-sauce Ctrl-C kills us



implicit val codec: Codec[String] = utf8

def transcode(ex: Exchange[BitVector, BitVector]) = {
val decoder = decode.many[String]
val encoder = encode.many[String]

val Exchange(src, sink) = ex

val src2 = src flatMap decoder.decode
val sink2 = sink pipeln encoder.encoder

Exchange(src2, sink2)



val clientP = for {
rawData <— Netty connect address
Exchange(src, sink) = transcode(rawData)

in = src to 10.stdOutLines
out = 10.stdInLines to sink

_ <— 1n merge out
} yield ()

val client: Task[Unit] = clientP.run
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Notes

Resources are managed and cannot leak

Logic is pure and encapsulated from networking
Backpressure "just works" (sort of)

 Qur Topic is unbounded, because I'm lazy
Handshaking would be almost trivial

Client and server logic looks almost the same!
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A different take on "reactive”

Purity helps us understand complex logic!

 No more puzzling about state or resource leaks
Simple and easy combinators scale well

You know almost everything you need



Questions?




