sea\az stream

Reaetlve N Reverse

r -; _'4' i - £ : .
e 2 A= £ _,-. WA : &

“ Pull vs Pusn

* Push streams
e Data assertively pushed into your tlow

 Naturally runs in parallel

“ Pull vs Pusn

* Push streams
e Data assertively pushed into your tlow
 Naturally runs in parallel

* Pull streams
* "Turn the crank’ from the end and request data

e Backpressure by definition

“ Pull vs Pusn

* Push streams
* Backpressure is something you need to design

* More intuitive control tlow (imperatively)

“ Pull vs Pusn

* Push streams
 Backpressure is something you need to design
* More intuitive control tlow (imperatively)

* Pull streams
* Concurrency doesn't exist

e More declarative control, which can be weird

Concepts

+ Task[A]

e | Ike Future, but more controlled

- Process[Task, Al

e A strict sequence of actions

(

Concepts: Task

e Fully lazy

Concepts: Task

e Fully lazy

* Creating a Future executes immediately

Concepts: Task

e Fully lazy
* Creating a Future executes immediately

* No more memory leaks!

Concepts: Task

e Fully lazy
* Creating a Future executes immediately
* No more memory leaks!

 Easy to move tasks between thread pools

Concepts: Task

e Fully lazy
* Creating a Future executes immediately
* No more memory leaks!

 Easy to move tasks between thread pools

e Better thread utilization

Concepts: Task

Fully lazy

* Creating a Future executes immediately
* No more memory leaks!

Easy to move tasks between thread pools
Better thread utilization

Explicit parallelism

def fib(n: Int): Task[Int] = n match {
case O | 1 => Task now 1
case n => {
for {
x <— fib(n - 1)
y <— fib(n - 2)
y yield x + vy
¥
s

fib(42).run

def fib(n: Int): Task[Int] = n match {
case @ | 1 => Task now 1
case n => {
val ND = Nondeterminism|[Task]

for {
pair <— ND.both(fib(n - 1), fib(n - 2))
(x, y) = pair
y yield x + vy
I3
¥

fib(42).run

def shiftPool[A] (task: Task[A]): Task[A] =
Task({ task })(MyThreadPool).join

def shiftPool[A] (task: Task[A]): Task[A] =
Task.fork(task) (MyThreadPool)

def futureToTask[A]l(f: Future[A]l): Task[A] = {
Task async { cb =>
f onComplete {
case Success(v) => cb(\/.right(v))
case Failure(e) => cb(\/.left(v))
I3
I3
I3

def futureToTask[A](f: Futurel[A]):

Task async { cb =>
f onComplete {

case Success(v) =

case Failure(e)

}
}
}

Task [A]

Concepts: Process

An ordered sequence of actions

Ask for an action...then the next...then the next

e |f you can't keep up, you ask less frequently
Easy to merge (just ask for data from either "side")

Explicit parallelism

def fetchUrl(num: Int): Task[String] = {
val fetch: Task[Task[String]] = Task delay {
val svc = url(s"http://api.stuff.com/record/$num")
Task fork futureToTask(Http(svc OK as.String))

}

fetch.join

}

val nums: Process|[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ *x 2 } filter { _ < 10 }

val pages = adjusted flatMap { num =>
Process.eval(fetchUrl(num))

I3

val found = pages find { _ contains "Waldo!" }

val stuff: Task[Unit] = found to io.stdOutLines run

stuff.run

Process.range(0, 10)
Process.range(11, 20)

val numsl: Process[Task, Int]
val nums2: Process|[Task, Int]

val nums: Process[Task, Int] = numsl interleave nums2

val 1 = new AtomicInteger

val read = Task delay {
i.getAndIncrement()

I3

val src = Process.eval(read).repeat

val left = src map { i => s"left: $i" }
val right = src map { i => s"right: $i" }

left interleave right to 1o.stdOutLines

left:

right:

left:

right:

left:

right:

left:

right:

left:

right:

left:

right:

left:

right:

0

<(x

@

@

// bounded queues are for wimps...

// bounded queues are for wimps...
val queue = new ArrayBlockingQueue[Message] (10)

// looks like I'm a wimp
val read: Task[Message]l = Task delay { queue.take() }

val src: Process[Task, Message] =
Process.eval(read).repeat

val queue = async.blockingQueue[Message] (10)

val src: Process[Task, Message]l = queue.dequeue

 Data has to go somewhere

Sinks

Sinks

 Data has to go somewhere

* Writing out to a channel

Sinks

 Data has to go somewhere
* Writing out to a channel

e Writing to disk

Sinks

* Data has to go somewhere

| g A
- & N

* Writing out to a channel

e Writing to disk

e _..or all of the above

Sinks

 Data has to go somewhere
* Writing out to a channel

* Writing to disk

e _..or all of the above

 What is a sink anyway”

Sinks

 Data has to go somewhere
* Writing out to a channel

e Writing to disk

e _..or all of the above
 What is a sink anyway”

e A stream of functions!

type Sink[F[_], Al = Process[F, A => F[Unit]]

def write(str: String): Task[Unit] =
Task delay { println(str) 7}

val sink: Sink[Task, String]l = Process.constant(write _)
val src = Process.range(0, 10) map { _.toString }

val results = src zip sink flatMap {
case (str, f) => Process eval f(str)

¥

val universe: Task[Unit] = results.run

val stdOut: Sink[Task, String] = ...
val channel: Sink[Task, String] = ...

val src = Process.range(0, 10) map { _.toString }

val results = src zip stdOut zip channel flatMap {
case ((str, f1), f2) => {
for {
<— Process eval f1(str)
_ <— Process eval f2(str)
} yield ()
}
}

val universe: Task[Unit] = results.run

val stdOut: Sink[Task, String] = ...
val channel: Sink[Task, String] = ...

val src = Process.range(0, 10) map { _.toString }
val results = src observe stdOut to channel

val universe: Task[Unit] = results.run

def debug[A] (stream: Process|[Task, A]): Process[Task, A] =
stream map { a => s'"debug: $a" } observe io.stdOutLines

Concurrency

Concurrency

* Always explicit!

Concurrency

* Always explicit!
e [wo forms of parallelism

* Racing two streams into one

* [urning a stream "sideways’

Concurrency

* Always explicit!
e [wo forms of parallelism

* Racing two streams into one

* [urning a stream "sideways’

* Almost everything implemented on top of wye

val left: Process[Task, Message] = ...

val right: Process|[Task, Message] = ...

val merged: Process|[Task, Message] =
left.wye(right) (wye.merge)

val left: Process[Task, Message] = ...
val right: Process|[Task, Message] = ...

val merged: Process|[Task, Message] =
left merge right // should be "race"

val left: Process[Task, Message] = ...
val right: Process[Task, Line] = ...

// oh NOES! teh symbols cometh!
val merged: Process|[Task, Message \/ Line] =
left either right

Useful wyes

- wye.merge

Useful wyes

- wye.merge

- wye.elither

Useful wyes

- wye.merge

- wye.elither

» wye.1lnterrupt

Useful wyes

- wye.merge

- wye.elither
» wye.1lnterrupt

* wye.drainL / wye.drainR

Useful wyes

- wye.merge

- wye.elither
» wye.1lnterrupt
* wye.drainL / wye.drainR

e Doesn't work!

val nums: Process|[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ x 2 } filter { _ < 10 }

val pages = adjusted flatMap { num =>
Process.eval(fetchUr1l(num))
I

val nums: Process|[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ x 2 } filter { _ < 10 }

val pages: Process[Task, Task[Stringl] =
adjusted map { num =>
fetchUrl(num)

}

val parallel: Process|[Task, String] =
pages.gather(4)

gather(n)

* (Grabs chunks of n and parallelizes

gather(n)

* (Grabs chunks of n and parallelizes

e [ast chunk of stream may be truncated

gather(n)

* (Grabs chunks of n and parallelizes
e [ast chunk of stream may be truncated

e (Great for finite streams!

gather(n)

Grabs chunks of n and parallelizes
Last chunk of stream may be truncated
Great for finite streams!

Causes DEADLOCK on infinite streams

gather(n)

Grabs chunks of n and parallelizes
Last chunk of stream may be truncated
Great for finite streams!

Causes DEADLOCK on infinite streams

 Don't use it you source from a queue!

val nums: Process|[Task, Int] = Process.range(0, 10)
val adjusted = nums map { _ x 2 } filter { _ < 10 }

val pages: Process[Task, Process[Task, String]] =
adjusted map { num =>
Process.eval(fetchUrl(num))

}

val parallel: Process|[Task, String] =
merge.mergeN(pages)

merge.mergeNn

e A |ittle weirder to use...

merge.mergeNn

e A |ittle weirder to use...

 Process of Process

merge.mergeNn

e A little welirder to use...
e Process of Process

 Uses a variable bounded queue

merge.mergeNn

e A l|ittle weirder to use...
* Process of Process
 Uses a variable bounded queue

 Races all input streams

merge.mergeNn

e A little weirder to use...

* Process of Process
 Uses a variable bounded queue
 Races all input streams

e Uptonatatime

merge.mergeNn

A little weirder to use...

* Process of Process

Uses a variable bounded gueue
Races all input streams

e Uptonatatime

Almost always what you really want

Chat Server

* Uses scalaz-netty project

Chat Server

* Uses scalaz-netty project

e Currently closed-source, but OSS soon™!

Chat Server

* Uses scalaz-netty project
e Currently closed-source, but OSS soon™!

e Would also work with scalaz-nio

Chat Server

Uses scalaz-netty project
e Currently closed-source, but OSS soon™!

e Would also work with scalaz-nio

Uses scodec

Chat Server

* Uses scalaz-netty project
e Currently closed-source, but OSS soon™!
 Would also work with scalaz-nio

* Uses scodec

 Usethis. Use it. It's amazing.

Chat Server

* Uses scalaz-netty project
e Currently closed-source, but OSS soon™!
 Would also work with scalaz-nio

* Uses scodec
 Usethis. Use it. It's amazing.

 Demonstrates the power of Process abstraction

Server

* Accept connections asynchronously

e ...and in parallell

Server

* Accept connections asynchronously
e ...and in parallell

* Pipe iInbound data to a relay queue

Server

* Accept connections asynchronously

e ...and in parallell
* Pipe inbound data to a relay queue

* Pipe relay queue into the outbound channel

Server

Accept connections asynchronously

e ...and in parallell

Pipe inbound data to a relay queue

Pipe relay gueue into the outbound channel

Continue until client closes connection

val address: InetSocketAddress = 777
val relay = async.topic[BitVector]

val handlers = Netty server address map { client =>

for {
Exchange(src, sink) <- client

in = src to relay.publish
out = relay.subscribe to sink

_ <— 1n merge out
} yield ()
¥

val server: Task[Unit] = merge.mergeN(handlers).run

Client

e Establish connection

Client

e Establish connection

* Pipe standard input to the server (as UTF-8)

Client

e Establish connection
* Pipe standard input to the server (as UTF-8)

* Pipe server response to standard output

Client

Establish connection
Pipe standard input to the server (as UTF-8)
Pipe server response to standard output

Continue until user fail-sauce Ctrl-C kills us

implicit val codec: Codec[String] = utf8

def transcode(ex: Exchange[BitVector, BitVector]) = {
val decoder = decode.many[String]
val encoder = encode.many[String]

val Exchange(src, sink) = ex

val src2 = src flatMap decoder.decode
val sink2 = sink pipeln encoder.encoder

Exchange(src2, sink2)

val clientP = for {
rawData <— Netty connect address
Exchange(src, sink) = transcode(rawData)

in = src to 10.stdOutLines
out = 10.stdInLines to sink

_ <— 1n merge out
} yield ()

val client: Task[Unit] = clientP.run

Notes

* Resources are managed and cannot leak

Notes

* Resources are managed and cannot leak

* Logic is pure and encapsulated from networking

Notes

* Resources are managed and cannot leak
* Logic is pure and encapsulated from networking

» Backpressure "just works" (sort of)

Notes

* Resources are managed and cannot leak
* Logic is pure and encapsulated from networking
» Backpressure "just works" (sort of)

 Qur Topic is unbounded, because I'm lazy

Notes

Resources are managed and cannot leak

Logic is pure and encapsulated from networking
Backpressure "just works" (sort of)

 Qur Topic is unbounded, because I'm lazy

Handshaking would be almost trivial

Notes

Resources are managed and cannot leak

Logic is pure and encapsulated from networking
Backpressure "just works" (sort of)

 Qur Topic is unbounded, because I'm lazy
Handshaking would be almost trivial

Client and server logic looks almost the same!

e A different take on "reactive’

e A different take on "reactive’

e Purity helps us understand complex logic!

o A different take on "reactive’
e Purity helps us understand complex logic!

 No more puzzling about state or resource leaks

e A different take on "reactive’
e Purity helps us understand complex logic!
 No more puzzling about state or resource leaks

 Simple and easy combinators scale well

A different take on "reactive”

Purity helps us understand complex logic!

 No more puzzling about state or resource leaks
Simple and easy combinators scale well

You know almost everything you need

Questions?

