
The House That 
SkyNet Built

James McGivern





In 2015 SkyNet SmartHomeTM is created.

10 years later it judges its human creators 
inferior and turns against them.

The human population is nearly driven to 
extinction as fridges, kettles, and other 
household appliances turn against them...





About This Talk...
• Emergent Behaviour & Misbehaviour

• Dynamic Systems

• Chaos Theory 

• Control Theory

• Game Theory

• Evolutionary Computing

• Agent Based Modelling & Multi-Agent Systems



About Me

I talk fast :(

Mathematician turned 
computer scientist



Complex Systems



Definition
• “A complex system is a damped, driven system (for example, a 

harmonic oscillator) whose total energy exceeds the threshold for 
it to perform according to classical mechanics but does not reach 
the threshold for the system to exhibit properties according to 
chaos theory.” - Wikipedia (Compex System)

• Common types:

• Chaotic systems

• Complex adaptive systems

• Non-linear systems

http://en.wikipedia.org/wiki/Damped
http://en.wikipedia.org/wiki/Damped
http://en.wikipedia.org/wiki/Harmonic_oscillator
http://en.wikipedia.org/wiki/Harmonic_oscillator
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Chaos_theory


The Butterfly Effect



The Butterfly Effect



The Butterfly Effect
• Complex systems can be sensitive to the initial conditions (system 

parameters) in which small changes in one state of a deterministic 
non-linear system can produce large differences in later states

• “Does the flap of a butterfly’s wings in Brazil set off a tornado in 
Texas?” - Lorentz (Deterministic Nonperiodic Flow 1963)

• “A Sound of Thunder” by Ray Bradbury was the 1st sci-fi book to 
use this idea

• As the complexity of your system increases so does the likelihood 
of it being prone to the butterfly effect



Chaotic Systems
• “Chaos: When the present determines the future, but the 

approximate present does not approximately determine the 
future.” - Lorentz

• Easiest example to imagine is the double pendulum

• Chaotic systems have:

• Sensitivity to initial conditions

• Density of periodic orbits

• Topological mixing



Emergent Behaviour



Definition
• ““things which have several parts and in which the totality is not, as it 

were, a mere heap, but the whole is something beside the parts” - 
Aristole

• “Emergent behavior is that which cannot be predicted through analysis 
at any level simpler than that of the system as a whole. Explanations of 
emergence, like simplifications of complexity, are inherently illusory and 
can only be achieved by sleight of hand. This does not mean that 
emergence is not real. Emergent behavior, by definition, is what' s left 
after everything else has been explained.” – George Dyson

• Emergent behaviour is:
• constituted by and generated from the underlying processes
• autonomous from the underlying processes



Boids
• Developed by Craig Reynolds in 1986

• Biods are “Bird-oid Object”, i.e simple bird-like autonomous agents 
which have 3 rules governing their behaviour:

• Rule 1: separation - steer to avoid crowding local flockmates

• Rule 2: alignment - steer towards the average heading of local 
flockmates

• Rule 3: cohesion - steer to move toward the average position 
(center of mass) of local flockmates

http://en.wiktionary.org/wiki/steer#Verb
http://en.wiktionary.org/wiki/steer#Verb


Sardines & Sharks
• We can extend the Boids simulation to include other agent types, 

for example a predator from which the prey (the boids) must flee

• Rule 4: Evasion - steer away from local predators

• Naturally the predators have their own set of rules:

• Rule 1: steer towards the largest local flock of prey

• Rule 2: steer towards the average heading of local predators

• Rule 3: steer to avoid crowding other local predators



Ant Colonies
• Ants start at the nest and travel randomly.

• As they travel, ants leave behind pheromones that lead back to the 
nest.

• When an ant stumbles upon food, it follows the pheromone trail 
back to the nest, leaving behind another pheromone trail leading 
back to the food.

• If an ant finds a pheromone trail, it follows it to the food.

• Pheromones evaporate over time, and it takes ants more time to 
traverse longer paths. Therefore, longer paths eventually dissipate 
as shorter paths are favored.



Building Complex 
Systems



The (Micro)-SOA Fallacy
The SOA vision of the future seems to be based on three concepts:

• Construction by composition: Complex systems can be 
constructed by composing well-defined, well-documented, and 
well-tested components (services). 

• Correctness by construction: Each composition step is simple 
enough that it is easy to be sure that the step meets its 
specification, either by informal inspection or by formal 
verification. 

• Loose coupling via networks: component services can be in 
administratively and geographically distinct places. 



L-Systems
• Lindenmayer's original L-system for modelling the growth of algae.

• variables : A B

• constants : none

• axiom  : A
• rules  : (A → AB), (B → A)

A → AB → ABA → ABAAB → ABAABABA → ABAABABAABAAB



Koch Snowflake



Multi-Agent Systems
• A multiagent system is one that consists of a number of agents, 

which interact with one-another. Agents act can with different 
goals and motivations. To successfully interact, they require the 
ability to cooperate, coordinate, and negotiate with each other.

• The agents in a multi-agent system have several important 
characteristics:

• Autonomy

• Local views

• Decentralisation



Agent Based Modelling
• A system comprised of an environment and a number of autonomous 

agents with:
• Decision making heuristics
• Learning rlues and/or adaptive processes
• Interaction rules

• ABM is extremely expensive to simulate, and grows in proportion to 
the size of the system

• Recent advances in GPU based computation have allowed new 
innovations

• Verification and Validation of ABM simulation models is very 
important



Agent-Oriented Programming
• Agent-oriented programming (AOP) can be viewed as a specialization 

of object-oriented programming.

• JADE (JAVA Agent DEvelopment Framework) - an Open-Source project 
implementing the FIPA Agent Communication Language. Features 
include:
• powerful task execution and composition model 
• peer to peer agent communication via asynchronous message 

passing 
• publish subscribe discovery mechanism

• SARL & Janus - a general-purpose agent-oriented language compatible 
with JAVA (via Maven) and a multi-agent platform for execution



Monitoring
• Log4j Appenders, e.g SocketAppender

• Slf4j + LogStash

• Scribe

• MBeans +

• VisualVM

• RHQ (previously JOPR)

• Commercial APM tools



Emergent Misbehaviour



Emergent Misbehaviour Is Not...

• Unexpected failure of a single component which breaks the entire 
system

• Errors in, or poor choice of algorithms and their implementations

• Limitations of (physical) resources

• E.g. OutOfMemoryExceptions

• Non-deterministic



Chaos & Misbehaviour
• If from the description of a system’s components and 

configuration you can inductively reason about the behaviour it is 
not emergent

• If from observations of the system we can deduce the cause of a 
problem when it occurs, then it may be possible to remove or fix 
the cause of the emergent misbehaviour

• If the system is chaotic then it is often impossible to reason 
deductively or inductively the exact cause of the emergent 
behaviour. However it may still be possible to constrain or mitigate 
the problems in the system, or limit the eccentricity by limiting 
free-parameters



Traffic Jams
• Traffic jams are emergent misbehaviour in many systems not just 

on roads.

• Drivers of automobiles can be modelled in a similar way to Boids, 
although the basic rules are longer and additional behaviours (such 
as overtaking) can be mixed in

• Even very simple simulations involving infinitely straight roads or 
circular circuits with rather dumb drivers exhibit traffic jams

• Curiously the congestion point where cars are most jammed up 
travels backwards with respect to the direction of traffic



The Challenges of Misbehaviour

• Creating a taxonomy of emergent misbehaviour

• Creating a taxonomy of cause patterns

• Dectection and diagnosis techniques

• Prediction methods

• Amelioration techniques and patterns

• Testing methodologies



Misbehaviour Pattern #1
Thrashing



Misbehaviour Pattern #2
Unwanted/Unnecessary 

synchronisation



Misbehaviour Pattern #3
Unwanted periodicity



Misbehaviour Pattern #4
Deadlock



Misbehaviour Pattern #5
Livelock



Misbehaviour Pattern #6
Chaotic behaviour



Misbehaviour Pattern #7
Phase Change(s)



Misbehaviour Pattern #7
Convergence on Local Optima



Causal Pattern #1
Unexpected resource sharing



Causal Pattern #2
Massive scale



Causal Pattern #4
Decentralised control



Causal Pattern #5
Unexpected input(s)



Causal Pattern #6
Unexpected load



Causal Pattern #7
Unaudited Output



Detection & Diagnosis

• Classic methods:

• heap dumps, gc logs, etc - good for single node/JVM failures

• logging - potential to spot simple errors

• replay - in combination with logs can help diagnose by 
reproduction

• model checking - complexity/difficulty of task increases with 
system size and complexity

• Reconsider what is “superfluous” monitoring!



Detection & Diagnosis
• Encode expectations:

• Pip

• PSpec

• A

Application LogCEP

Rule Engine



Detection & Diagnosis
• Similar Java tools:

• Appdynamics, New Relic

• RHQ

• Splunk, VisualVM, Netbeans Profiler, MAT, GC Viewer

• Chef, Puppet, Ansible, Vagrant, etc

• Sadly there is a lack of “out of the box” emergent behaviour 
monitoring tools and many companies with distributed complex 
systems spend a great deal of time stitching together a solution 
from the available tools



Predicting Disaster
• Model checking, verification, and validation

• E.g. Z Notation, VDM (Vienna Development Method)

• VOMAS (Virtual Overlay Multi-Agent System)

• An additional “layer” of “intelligent” agents operate in the system 
watching events (logs) and checking for violations of model 
invariants and other expectations

• CrystalBall

• Agents predict the effect of the behaviour on nearby agents 
using a “consequence prediction algorithm”



Amelioration Techniques & Patterns

• Randomisation

• Introduce & expect latency

• Rate limiting & buffering

• Over provisioning

• Introspection & closed control loop adaptive feedback

• Expect failure & recovery of components

• Boundary guardians

• Self-Healing



Test, Test, Test
• Since emergent (mis)-behaviour is a property of the complete 

system the system must be tested as a whole

• Test inputs and expectations must be realistic

• Test environment should match deployment environment

• Record and replay techniques

• DO NOT RELY ON HUMAN TESTING STRATEGIES!!

• The more tests you define more clearly helps you encode normal 
behaviour of the system under load(s)



Summary



• Learn to classify causes and symptoms of emergent misbehabiour

• Build systems to monitor behaviour in real-time

• Define what behaviour is “normal” for your system

• Build automated alert & response mechanisms

• Collect as much runtime performance data as you can

• Balanced against the performance impact costs

• When testing ensure to include full system simulation in 
representative environments (hardware, input data, etc)

• When designing complex systems allow for injection of controlling 
variables of execution, e.g. latency, throttling, memory allocation, 
etc. These allow for the fine-tuning of the performance and 
behaviour of your system.



Thank You



The House That 
SkyNet Built

James McGivern


