
@jezhumble
jfokus | 4 february 2015

maintainable test automation

build quality in

“Cease dependence on
mass inspection to
achieve quality. Improve
the process and build
quality into the product
in the first place”

 W. Edwards Deming

what to expect

• Creating high quality acceptance tests
• How to structure a maintainable acceptance test

suite
• Patterns for effective teamwork
• Managing test data

different kinds of tests

Functional acceptance
tests

Showcases
Usability testing

Exploratory testing

Unit tests
Integration tests

System tests

Non-functional
acceptance tests

(performance, scaling, ...)

Business facing

Technology facing

C
ritiq

u
e
 p

ro
je

c
t

S
u
p
p
o
rt

 p
ro

g
ra

m
m

in
g

AUTOMATED

AUTOMATED

MANUAL

MANUAL / AUTOMATED

Diagram invented by Brian Marick

UI

Service

Unit

Mike Cohn:
Succeeding with Agile

End to End
Business Facing

Localized
Technology Facing

principle 0

Writing good acceptance tests is hard.

(good: when the tests are green, we know
the software works)

mingle

• actual running time: 55 minutes
• 7-10 times a day
• for 6 years, across 4 offices now

2006
20 tests
500 LOC
2 minutes

2012
3000 tests
50k LOC
12 hours

for the same reasons code does

we don’t pay enough attention to expressing
intent

only testers care about maintaining tests

why do test suites decay?

principles

principle 1

Tests are first-class citizens of your project

don’t repeat yourself

treat test code as production code

refactor relentlessly

use record-playback tools to build your suite

don’t repeat yourself

preventing decay in test code

express the test as steps of a user's journey

given-when-then is insufficient

separate intention from mechanics

preventing decay of intention

use natural language to express intentions

use a general purpose programming language to
express test mechanics

use a tool that allows you to operate in either
domain transparently

a solution

page object

public class LoginPage {

 private final SeleniumSession browser;

 public LoginPage(Selenium browser){
 this.browser = browser;
 }

 public HomePage loginAs(String user, String password){
 browser.type('#login', login);
 browser.type('#password', password);
 browser.submit('#login-form');
 return new HomePage(this.browser);
 }

 public HomePage loginExpectingError(String user, String password){
 browser.type('#login', login);
 browser.type('#password', password);
 browser.submit('#login-form');
 return new LoginPage(this.browser);
 }
}

https://gist.github.com/3345556

https://gist.github.com/3345556

Customer Tester

Developer Tester

Acceptance Criteria

Test implementation

...advocates for the user and makes the quality
of the system transparent

...is a role, not a person

...is not a failed developer

...should be focussed on exploratory testing &
maintaining automated acceptance tests

...should not be primarily working on manual
regression testing

tester / quality analyst

passing acceptance tests are necessary (but
insufficient) for “done”

encapsulate!

the acceptance tests are owned by—and the
responsibility of—the team

remember

principle 2

always interact with the system under test the
same way a user would

ajax based tests?

"the test fails in CI, but when I run the app,
everything seems fine"

usually an indication that test mechanics and
user interaction patterns differ

JS heavy applications, which need non-zero
processing time to modify the UI

browser based tests are unreliable

wait-utils (https://github.com/itspanzi/WaitUtils)

for ajax tests, if your JS framework provides a
pre- and post- call hook, intercept those to count
the number of active calls before proceeding

some solutions

https://github.com/itspanzi/WaitUtils

var AjaxTracker = {

 PENDING_REQUESTS: $A([]),

 onCreate: function(request){
 if (!request.url.match(/gadgets\/js\//)) {
 this.PENDING_REQUESTS.push(request.url);
 }
 },

 onComplete: function(request){
 this.PENDING_REQUESTS = this.PENDING_REQUESTS.without(request.url);
 },

 onException: function(request, exception){
 try {
 this.onComplete(request);
 }catch(e){
 if (Prototype.isFireBugsEnabled) {
 console.log("Got Exception on request: " + request.url);
 console.log(e);
 throw(e);
 }
 }
 },

 allAjaxComplete: function(includeCardSummary){
 var requests = this.PENDING_REQUESTS.reject(function(url) {
 return url.match(/cards\/card_summary/) || url.match(/also_viewing/);
 });
 return requests.size() == 0;
 }
};

Ajax.Responders.register(AjaxTracker);

https://gist.github.com/3315690

https://gist.github.com/3315690

make time to go back and refactor your tests

use layers and encapsulation: separate high level
intent and low level mechanics

use page object to interact with SUT; run against
service layer where possible

remember

principle 3

continuously curate the structure of your test
suites

#1301
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1302
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1303
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1304
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1305
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1306
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1307
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1308
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1309
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1310
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1311
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1312
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1313
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1314
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1315
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1316
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1317
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

#1318
As a... I want... So that...

Given... Given...
When... When...
Then... Then...

Buy Product

Search product catalogue
Add product to cart
Check out
Create new account
Provide address details
Provide credit card details
Complete order
Verify order created
Verify credit card debited
Verify email sent

#1612
As a customer
I want a gift wrapping option
So that I don’t have to wrap
them and post them myself Buy Product

Search product catalogue
Add product to cart
Check out
Create new account
Provide address details
Provide credit card details
Select gift wrapping option
Complete order
Verify order created
Verify gift wrapping option
Verify credit card debited
Verify email sent

scenario tests

features
Basic shopping cart functionality

Searching for a product
- searching for a word should bring up all products which have that word in their name
- searching for a phrase should bring up all products which have any of the words in their
name
- searching for a quoted phrase should bring up all products which have all words in the
the quoted phrase in their name

Paginating search results
- return 25 results per page by default
- if there are fewer than 25 results, do not show pagination links
- provide a "previous" link on every page other than the first page of results
- provide a "next" link on every page other than the last page of results
- if user supplies a page number which is less than 1 in the URL, stay on the first page
- if the user supplies a page number greater than the last page of results, stay on the
last page

Gift-wrap option

story tests

Story tests for search
- test that searching for "friends" brings back 782 results
-- results should include how to win friends and influence people

- test that searching for dead friends brings back 8900 results
-- results should include <how to win friends and influence people>
-- results should include <The Zombie Survival Guide: Complete Protection from the
Living Dead>

- test that searching for "dead friends" brings back 57 results
-- results should include <all my friends are dead>

Story tests for pagination
- with a catalog of 3 products, I should see no pagination links
- with a catalog of 25 products, I should see no pagination links
- with a catalog of 26 products, I should see 1 link to page two, along with a next link
but no previous link
- with a catalog of 26 products, on page 2, I should see one product, with a link to
page one, a previous link but no next link

Story tests for gift wrapping

most applications have very few distinct personas

identify user journeys

(journey: the path a persona takes through the
application to achieve an end goal)

most stories in iterative development are
enhancements to existing journeys

some solutions

journey tests

Journey of user buying a book

- Login as user "bob"
- Search for <"my friends" dead>
- Make sure that 3 pages of results show
- Verify that "All My Friends Are Dead" by "Avery Monson" is on
the first page
- Add two copies of the book to the shopping cart
- Gift wrap one of them
- Proceed to checkout

test the most likely path that the team, business
and UX folks agree upon

extract journeys from your acceptance tests

make them fast and run them first

extract negative tests and edge cases into a
regression suite which runs after your journey tests

don’t test every possible path through the system

more solutions

principle 4

everyone owns acceptance tests

Add a guard to prevent it happening again

Triage to find root cause
1. There was an environmental problem
2. There is a bug with the test
3. An assumption changed
4. The test actually caught a bug

Fix the problem

Optimise your process for time to fix tests

Optimise your test suite: detect failures fast

When acceptance tests break

flaky tests are worse than useless

quarantine flaky tests - but not forever

http://martinfowler.com/articles/nonDeterminism.html

intermittent failures

http://martinfowler.com/articles/nonDeterminism.html

Not all tests should call the external system

Parameterize connections to external systems

Run integration smoke tests before full
acceptance suite

external systems

impersonator pattern

principle 5

acceptance tests are responsible for managing
their own test data

Application reference data

Test-specific data

Test reference data

Don’t use production data dumps (except for
performance testing and staging)

Ensure tests are independent

test data

recap

1. Treat acceptance tests like production code

2. Always interact with the SUT like a user would

3. Continuously curate your user journeys

4. Collective ownership of acceptance tests

5. Acceptance tests own their data

take-aways
• quality is everybody’s responsibility

• high quality test suites are continuously curated -
by testers and developers working together

• test code needs to receive the same care as
production code

• exhaustive story-level testing is not a good basis
for maintainable acceptance suites

questions
@jezhumble | jez@chef.io
http://chef.io/
http://continuousdelivery.com/

© 2015 Chef, Inc. and ThoughtWorks, Inc.

ORDER THE LEAN ENTERPRISE!
http://bit.ly/lean-enterprise-ebook
http://bit.ly/lean-enterprise-paper

mailto:jez@getchef.com?subject=
http://continuousdelivery.com
http://bit.ly/lean-enterprise-ebook
http://bit.ly/lean-enterprise-paper

