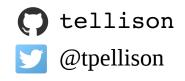
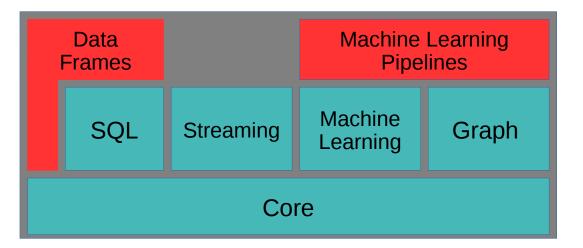
A Java Implementer's Guide to Better Apache Spark Performance

Tim Ellison IBM Runtimes Team, Hursley, UK



Apache Spark is a fast, general purpose cluster computing platform

Jfokus



Apache Spark APIs

- Spark Core
 - Provides APIs for working with raw data collections
 - Map / reduce functions to transform and evaluate the data
 - Filter, aggregation, grouping, joins, sorting

Spark SQL

- APIs for working with structured and semi-structured data
- Loads data from a variety of sources (DB2, JSON, Parquet, etc)
- Provides SQL interface to external tools (JDBC/ODBC)

Spark Streaming

- Discretized streams of data arriving over time
- Fault tolerant and long running tasks
- Integrates with batch processing of data

Machine Learning (MLlib)

- Efficient, iterative algorithms across distributed datasets
- Focus on parallel algorithms that run well on clusters
- Relatively low-level (e.g. K-means, alternating least squares)
- Graph Computation (GraphX)
 - View the same data as graph or collection-based
 - Transform and join graphs to manipulate data sets
 - PageRank, Label propagation, strongly connected, triangle count, ...

text_file.flatMap(lambda line: line.split())
 .map(lambda word: (word, 1))
 .reduceByKey(lambda a, b: a+b)

context.jsonFile("s3n://...")
 .registerTempTable("json")
results = context.sql(
 """SELECT *
 FROM people
 JOIN json ...""")

TwitterUtils.createStream(...)
 .filter(_.getText.contains("Spark"))
 .countByWindow(Seconds(5))

points = spark.textFile("hdfs://...")
 .map(parsePoint)

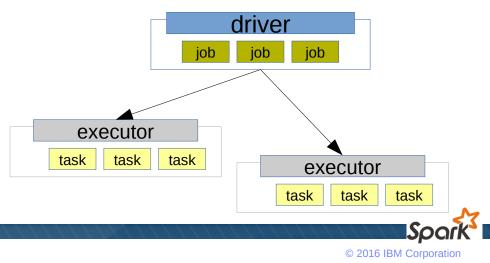
model = KMeans.train(points, k=10)

```
graph = Graph(vertices, edges)
messages = spark.textFile("hdfs://...")
graph2 = graph.joinVertices(messages) {
   (id, vertex, msg) => ...
```

Jfokus

Worker Node Cluster Computing Platform Executor Cache Task Task Driver Program SparkContext Cluster Manager Master Node "the driver" Worker Node Evaluates user operations Executor Cache - Creates a physical execution plan to obtain the final result (a "job") Task Task - Works backwards to determine what individual "tasks" are required to produce the answer

- Optimizes the required tasks using pipelining for parallelizable tasks, reusing intermediate results, including persisting temporary states, etc ("stages of the job")
- Distributes work out to worker nodes
- Tracks the location of data and tasks
- Deals with errant workers
- Worker Nodes "the executors" in a cluster Executes tasks
 - Receives a copy of the application code
 - Receives data, or the location of data partitions
 - Performs the required operation
 - Writes output to another input, or storage

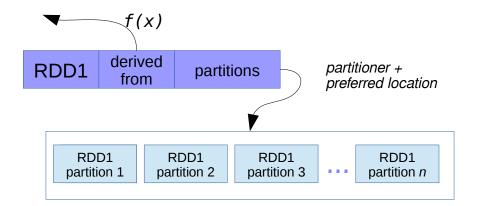


Jfokus

Resilient Distributed Dataset

- The Resilient Distributed Dataset (RDD) is the target of program operations
- Conceptually, one large collection of all your data elements can be huge!
- Can be the original input data, or intermediate results from other operations

- In the Spark implementation, RDDs are:
 - Further decomposed into partitions
 - Persisted in memory or on disk
 - Fault tolerant
 - Lazily evaluated
 - Have a concept of location optimization



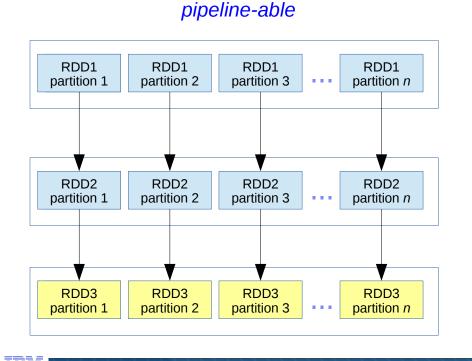
Performance of the Apache Spark Runtime Core

Moving data blocks

- How quickly can a worker get the data needed for this task?
- How quickly can a worker persist the results if required?

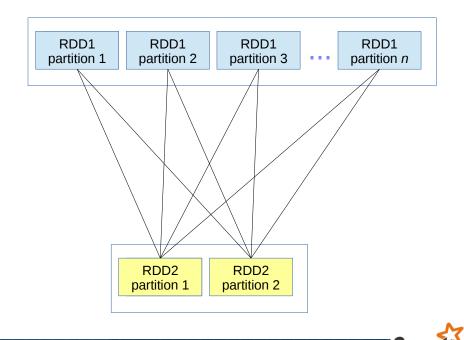
Executing tasks

- How quickly can a worker sort, compute, transform, ... the data in this partition?
- Can a fast worker work-steal or run speculative tasks?



"Narrow" RDD dependencies e.g. map()

"Wide" RDD dependencies e.g. reduce() shuffles



A few things we can do with the JVM to enhance the performance of Apache Spark!

- 1) JIT compiler enhancements, and writing JIT-friendly code
- 2) Improving the object serializer
- 3) Faster IO networking and storage
- 4) Offloading tasks to graphics co-processors (GPUs)

JIT compiler enhancements, and writing JIT-friendly code

JNI calls are not free!

```
JNIEXPORT void JNICALL Java_org_xerial_snappy_SnappyNative_arrayCopy
       (JNIEnv * env, jobject self, jobject input, jint offset, jint length, jobject output, jint output_offset)
      {
             char* src = (char*) env->GetPrimitiveArrayCritical((jarray) input, 0);
289
             char* dest = (char*) env->GetPrimitiveArrayCritical((jarray) output, 0);
290
             if(src == 0 || dest == 0) {
291
                     // out of memory
292
                     if(src != 0) {
293
                              env->ReleasePrimitiveArrayCritical((jarray) input, src, 0);
294
295
                      }
                      if(dest != 0) {
296
                              env->ReleasePrimitiveArrayCritical((jarray) output, dest, 0);
297
                      }
299
                      throw_exception(env, self, 4);
                      return;
301
              }
             memcpy(dest+output_offset, src+offset, (size_t) length);
304
             env->ReleasePrimitiveArrayCritical((jarray) input, src, 0);
             env->ReleasePrimitiveArrayCritical((jarray) output, dest, 0);
307
     }
```

https://github.com/xerial/snappy-java/blob/develop/src/main/java/org/xerial/snappy/SnappyNative.cpp

© 2016 IBM Corporation

Jfokus

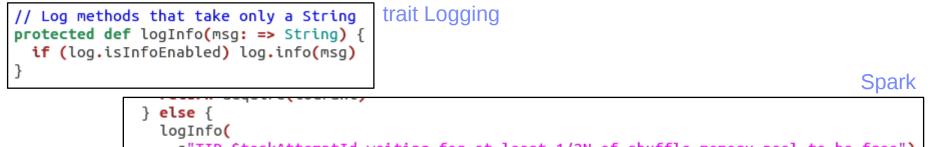
Style: Using JNI has an impact...

- The cost of calling from Java code to natives and from natives to Java code is significantly higher (maybe 5x longer) than a normal Java method call.
 - The JIT can't in-line native methods.
 - The JIT can't do data flow analysis into JNI calls
 - e.g. it has to assume that all parameters are always used.
 - The JIT has to set up the call stack and parameters for C calling convention,
 - i.e. maybe rearranging items on the stack.
- JNI can introduce additional data copying costs
 - There's no guarantee that you will get a direct pointer to the array / string with Get<type>ArrayElements(), even when using the GetPrimitiveArrayCritical versions.
 - The IBM JVM will always return a copy (to allow GC to continue).
- Tip:
 - JNI natives are more expensive than plain Java calls.
 - e.g. create an unsafe based Snappy-like package written in Java code so that JNI cost is eliminated.

© 2016 IBM Corporation

Style: Use JIT optimizations to reduce overhead of logging checks

Spark's logging calls are gated on the checks of a static boolean value



- s"TID \$taskAttemptId waiting for at least 1/2N of shuffle memory pool to be free")
 memoryManager.wait()
- Tip: Check for the non-null value of a static field ref to instance of a logging class singleton

```
- e.g. // Log methods that take only a String
protected def logInfo(msg: => String) {
    if (infoLogger != null) infoLogger.log(msg)
}
```

 Uses the JIT's speculative optimization to avoid the explicit test for logging being enabled; instead it ...

1)Generates an internal JIT runtime assumption (e.g. InfoLogger.class is undefined),

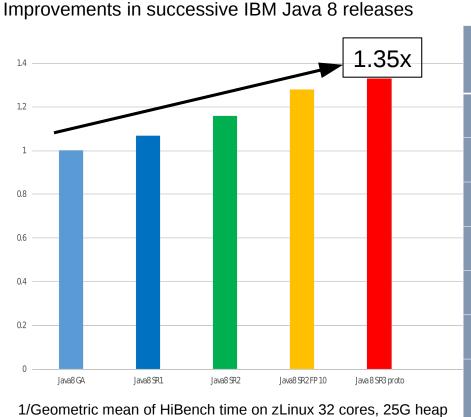
2)NOPs the test for trace enablement

3)Uses a class initialization hook for the InfoLogger.class (already necessary for instantiating the class) 4)The JIT will regenerate the test code if the class event is fired

Style: Judicious use of polymorphism

- Spark has a number of highly polymorphic interface call sites and high fan-in (several calling contexts invoking the same callee method) in map, reduce, filter, flatMap, ...
 - e.g. ExternalSorter.insertAll is very hot (drains an iterator using hasNext/next calls)
- Pattern #1:
 - InterruptibleIterator \rightarrow Scala's mapIterator \rightarrow Scala's filterIterator \rightarrow ...
- Pattern #2:
 - InterruptibleIterator \rightarrow Scala's filterIterator \rightarrow Scala's mapIterator \rightarrow ...
- The JIT can only choose one pattern to in-line!
 - Makes JIT devirtualization and speculation more risky; using profiling information from a different context could lead to incorrect devirtualization.
 - More conservative speculation, or good phase change detection and recovery are needed in the JIT compiler to avoid getting it wrong.
- Lambdas and functions as arguments, by definition, introduce different code flow targets
 - Passing in widely implemented interfaces produce many different bytecode sequences
 - When we in-line we have to put runtime checks ahead of in-lined method bodies to make sure we are going to run the right method!
 - Often specialized classes are used only in a very limited number of places, but the majority of the code does not use these classes and pays a heavy penalty
 - e.g. Scala's attempt to specialize Tuple2 Int argument does more harm than good!
- Tip: Use polymorphism sparingly, use the same order / patterns for nested & wrappered code, and keep call sites homogeneous.

Effect of Adjusting JIT heuristics for Apache Spark



Performance compared with OpenJDK 8

	IBM JDK8 SR3 (tuned)	IBM JDK8 SR3 (out of the box)
PageRank	160%	148%
Sleep	101%	113%
Sort	103%	147%
WordCount	130%	146%
Bayes	100%	91%
Terasort	157%	131%
Geometric mean HiBench huge, Spark :	121% 1.5.2, Linux Power8 12	116% core * 8-way SMT

Replacing the object serializer

Writing a Spark-friendly object serializer

- Spark has a plug-in architecture for flattening objects to storage
 - Typically uses general purpose serializers, e.g. Java serializer, or Kryo, etc.
- Can we optimize for Spark usage?
 - Goal: Reduce time time to flatten objects
 - Goal: Reduce size of flattened objects
- Expanding the list of specialist serialized form
 - Having custom write/read object methods allows for reduced time in reflection and smaller onwire payloads.
 - Types such as Tuple and Some given special treatment in the serializer
- Sharing object representation within the serialized stream to reduce payload

 But may be defeated if supportsRelocationOfSerializedObjects required
- Reduce the payload size further using variable length encoding of primitive types.
 All objects are eventually decomposed into primitives

Writing a Spark-friendly object serializer

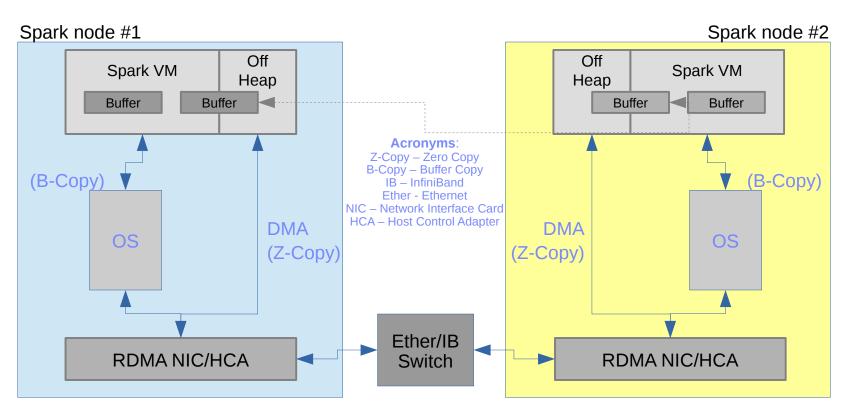
- Adaptive stack-based recursive serialization vs. state machine serialization
 - Use the stack to track state wherever possible, but fall back to state machine for deeply nested objects (e.g. big RDDs)
- Special replacement of deserialization calls to avoid stack-walking to find class loader context
 - Optimization in JIT to circumvent some regular calls to more efficient versions

- Tip: These are opaque to the application, no special patterns required.
- Results: Variable, small numbers of percentages at best

Faster IO – networking and storage

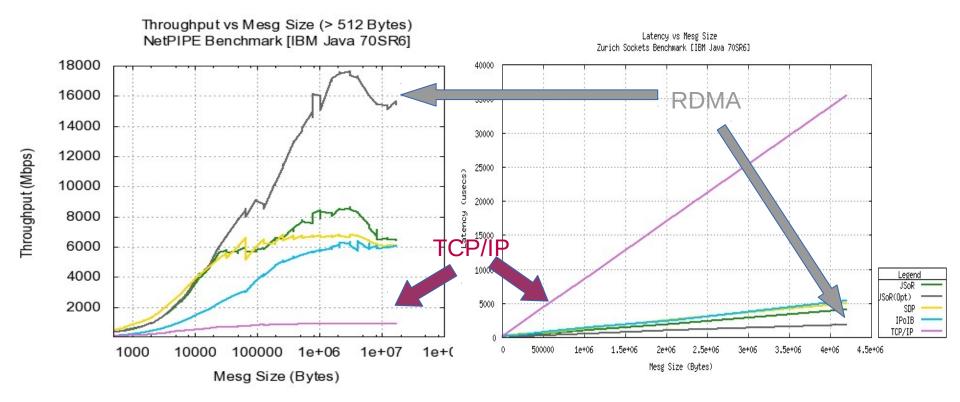
© 2016 IBM Corporation

Remote Direct Memory Access (RDMA) Networking



- Low-latency, high-throughput networking
 - Direct 'application to application' memory pointer exchange between remote hosts
 - Off-load network processing to RDMA NIC/HCA OS/Kernel Bypass (zero-copy)
 - Introduces new IO characteristics that can influence the Spark transfer plan

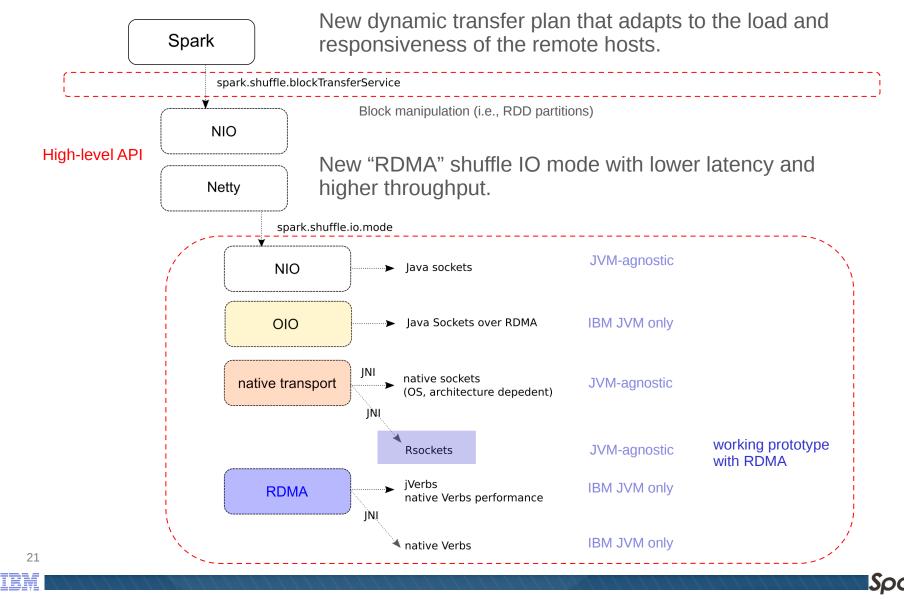
IBM



RDMA exhibits improved throughput and reduced latency. Available over java.net.Socket APIs or explicit jVerbs calls

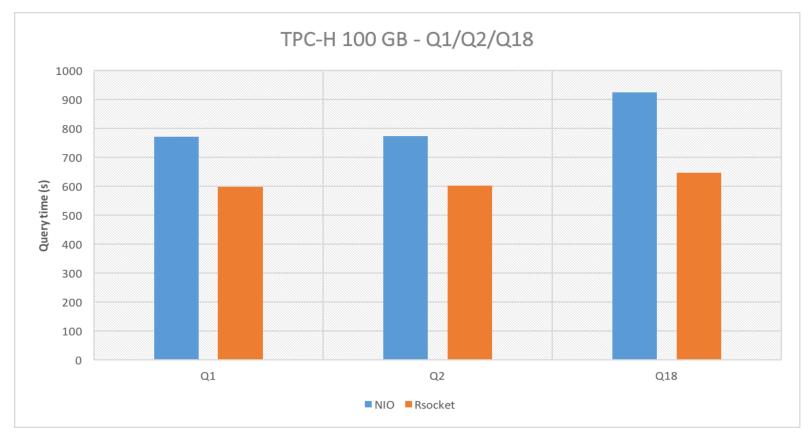
TRM

Faster network IO with RDMA-enabled Spark



© 2016 IBM Corporation

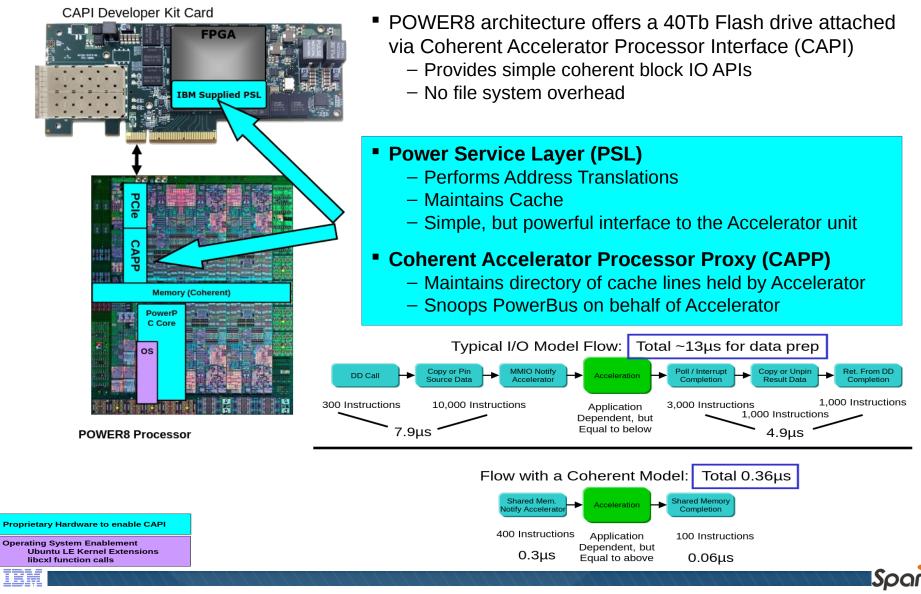
Shuffling data shows 30% better response time and lower CPU utilization



IRM

Jfokus

Faster storage with POWER CAPI/Flash



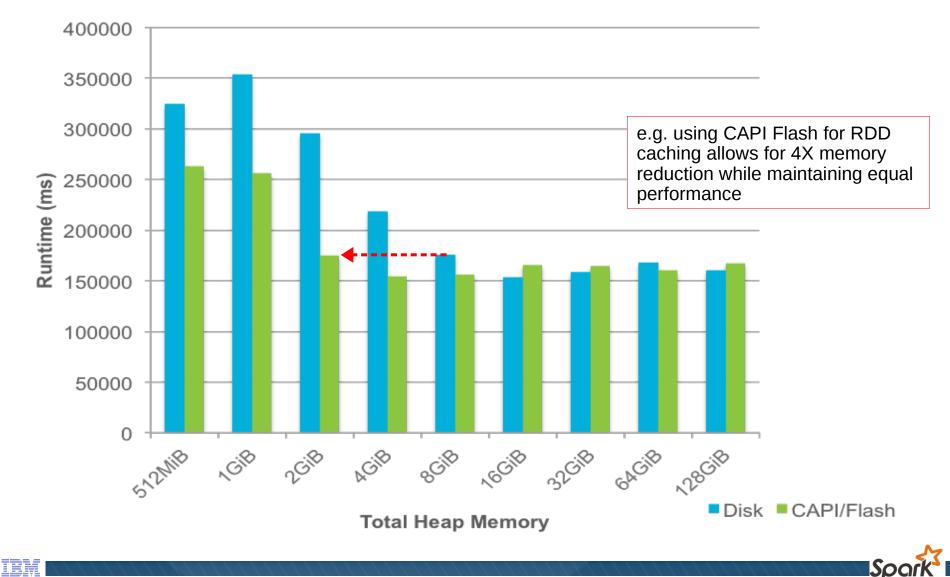
Jfokus

Faster disk IO with CAPI/Flash-enabled Spark

- When under memory pressure, Spark spills RDDs to disk.
 - Happens in ExternalAppendOnlyMap and ExternalSorter
- We have modified Spark to spill to the high-bandwidth, coherently-attached Flash device instead.
 - Replacement for DiskBlockManager
 - New FlashBlockManager handles spill to/from flash
- Making this pluggable requires some further abstraction in Spark:
 - Spill code assumes using disks, and depends on DiskBlockManger
 - We are spilling without using a file system layer
- Dramatically improves performance of executors under memory pressure.
- Allows to reach similar performance with much less memory (denser deployments).

© 2016 IBM Corporation

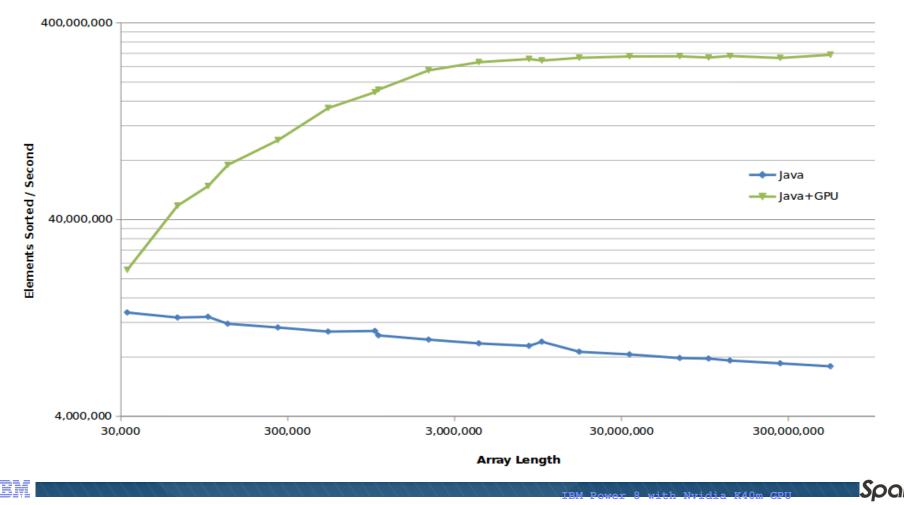
x Degrees of Separation on Spark



Offloading tasks to graphics co-processors

GPU-enabled array sort method

- Some Arrays.sort() methods will offload work to GPUs today
 - -e.g. sorting large arrays of ints

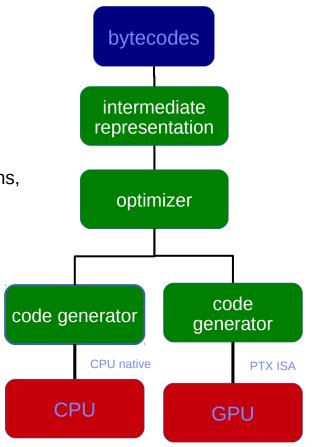


Jfokus

JIT optimized GPU acceleration

- As the JIT compiles a stream expression we can identify candidates for GPU off-loading
 - Arrays copied to and from the device implicitly
 - Java operations mapped to GPU kernel operations
 - Preserves the standard Java syntax and semantics

- Comes with caveats
 - Recognize a limited set of operations within the lambda expressions,
 - · notably no object references maintained on GPU
 - Default grid dimensions and operating parameters for the GPU workload
 - Redundant/pessimistic data transfer between host and device
 - Not using GPU shared memory
 - Limited heuristics about when to invoke the GPU and when to generate CPU instructions



© 2016 IBM Corporation

GPU optimization of Lambda expressions

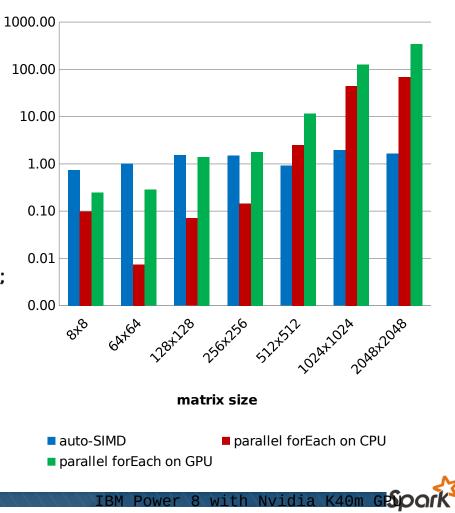
The JIT can recognize parallel stream code, and automatically compile down to the GPU.

```
public void multiply() {
```

```
IntStream.range(0, COLS*COLS).parallel().forEach(
    id -> {
        int i = id / COLS;
        int j = id % COLS;
        double sum = 0;
```

```
for (int k = 0; k < COLS; k++) {
    sum += input1[i*COLS + k] * input2[k*COLS + j];
}
output[id] = sum;
});</pre>
```

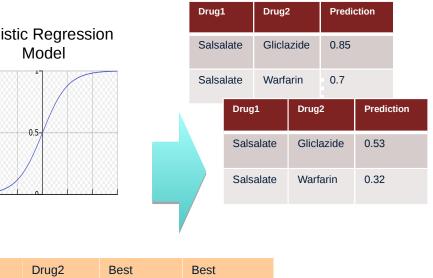
Speed-up factor when run on a GPU enabled host



}

Moving high-level algorithms onto the GPU

Interactions Prediction



Prot		Drug1				Drug2		Sim						
RIIGBANK		Salsalate		te		Aspirin		.9					_	<u>.</u>
en Data Drug & Drug Target Database		Dic	icoumarol			Warfarin		.76	.76				Lo	gist
enably under a constant mitigh Journal of Cancer able yokay function of Cancer Strength			Drug1			Drug2		Si	im					
			Salsalate				Aspirin .		.7					
			Dic	coum	narol		Warfa	rin	.6					
Unified Medical Language Sy	/stem®		Int	ter	act	ion	S				_ /			
	Dru	ıg1		Dr	ug2									
Aspirir		oirin	in Glicla			ide						D	Drug1	
	Asp	oirin		Di	cour	naro	I						9	
					Dru	ıg1	Dru	g2				S	Salsal	ate
					Asp	oirin	Pro	beneci	d			S	Salsal	ate
					Asp	oirin	Azil	sartan						

Drug2 SimN*SimN Sim1*Sim1 Gliclazide .9*1 .7*1 e

.9*.76

.7*.6

Warfarin

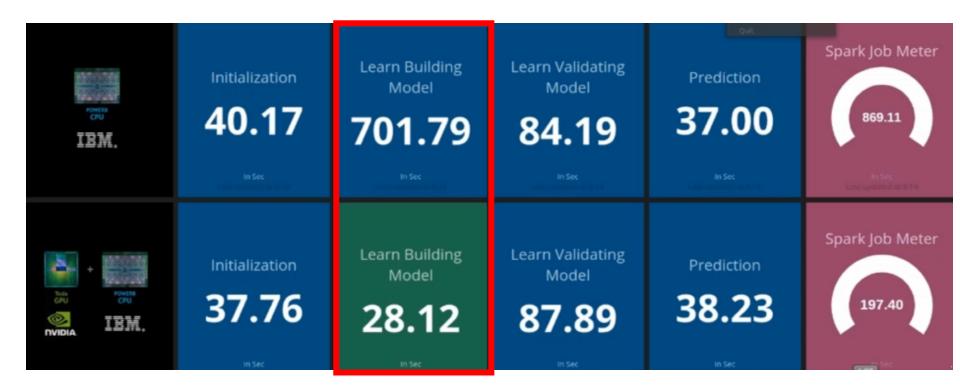
UniPro

BIC

Open Data Drug

Se © 2016 IBM Corporation

© 2016 IBM Corporation



- 25X Speed up for Building Model stage (replacing Spark Mllib Logistic Regression)
- Transparent to the Spark application, but requires changes to Spark itself

IRM

Summary

- We are focused on Core runtime performance to get a multiplier up the Spark stack.
 - More efficient code, more efficient memory usage/spilling, more efficient serialization & networking, etc.
- There are hardware and software technologies we can bring to the party.
 We can tune the stack from hardware to high level structures for running Spark.
- Spark and Scala developers can help themselves by their style of coding.
- All the changes are being made in the Java runtime or being pushed out to the Spark community.

Lightning-Fast Cluster Computing

 There is lots more stuff I don't have time to talk about, like GC optimizations, object layout, monitoring VM/Spark events, hardware compression, security, etc. etc.
 -mailto:tellison@apache.org

