Data pipelines from zero to solid

Lars Albertsson
www.mapflat.com
Who’s talking?

Swedish Institute of Computer Science (test tools)
Sun Microsystems (very large machines)
Google (Hangouts, productivity)
Recorded Future (NLP startup)
Cinnober Financial Tech. (trading systems)
Spotify (data processing & modelling)
Schibsted (data processing & modelling)
Independent data engineering consultant
Presentation goals

- Overview of data pipelines for analytics / data products
- Target audience: Big data starters
 - Seen wordcount, need the stuff around
- Overview of necessary components & wiring
- Base recipe
 - In vicinity of state-of-practice
 - Baseline for comparing design proposals
- Subjective best practices - not single truth
- Technology suggestions, (alternatives)
Presentation non-goals

- Stream processing
 - High complexity in practice
 - Batch processing yields > 90% of value
- Technology enumeration or (fair) comparison
- Writing data processing code
 - Already covered en masse
Data product anatomy
Computer program anatomy

Input data → Execution path
Function → Variable

Input:
HID
File

Process:
RAM

Output:
File
Lookup structure
Window
Data pipeline = yet another program

Don’t veer from best practices

- Regression testing
- Design: Separation of concerns, modularity, etc
- Process: CI/CD, code review, lint tools
- Avoid anti-patterns: Global state, hard-coding location, duplication, ...

In data engineering, slipping is the norm... :-(

Solved by mixing strong software engineers with data engineers/scientists. Mutual respect is crucial.
Event collection

Unreliable

Service

Unreliable

Bus with history
Kafka
(Kinesis, Google Pub/Sub)

Reliable, simple, write available

(Secor, Camus)

Unified log
Immutable events, append-only, source of truth

Immediate handoff to append-only replicated log.
Once in the log, events eventually arrive in storage.
Asynchronous fire-and-forget handoff for unimportant data.
Synchronous, replicated, with ack for important data
Event transportation

Log has *long history* (months+) => robustness end to end. Avoid risk of processing & decoration. Except timestamps.
Event arrival

Bundle incoming events into datasets
- Sealed quickly, thereafter immutable
- Bucket on arrival / wall-clock time
- Predictable bucketing, e.g. hour

(Secor, Camus)

Cluster storage

clicks/2016/02/08/14

clicks/2016/02/08/15
Database state collection

Source of truth sometimes in database.
Snapshot to cluster storage.
Easy on surface...
Anti-pattern: Send the oliphants!

- Sqoop (dump with MapReduce) production DB
- MapReduce from production API

Hadoop / Spark == internal DDoS service

Our precioussss
Deterministic slaves

Restore backup to offline slave

+ Standard procedure
- Serial or resource consuming

Cluster storage
HDFS
(NFS, S3, Google CS, C*)
Using snapshots

- `join(event, snapshot) => always time mismatch`
- Usually acceptable
- Some behaviour difficult to catch with snapshots
 - E.g. user creates, then deletes account
Event sourcing

- Every change to unified log == source of truth
- \(\text{snapshot}(t + 1) = \text{sum}(\text{snapshot}(t), \text{events}(t, t+1)) \)
- Allows view & join at any point in time

Application services still need DB for current state lookup
Event sourcing, synced database

A. Service interface generates events and DB transactions

B. Generate stream from commit log
 Postgres, MySQL -> Kafka

C. Build DB with stream processing
DB snapshot lessons learnt

- Put fences between online and offline components
 - The latter can kill the former
- Team that owns a database/service must own exporting data to offline
 - Protect online stability
 - Affects choice of DB technology
The data lake

Unified log + snapshots

- Immutable datasets
- Raw, unprocessed
- Source of truth from batch processing perspective
- Kept as long as permitted
- Technically homogeneous

Cluster storage

Data lake
Datasets

- Pipeline equivalent of objects
- Dataset class == homogeneous records, open-ended
 - Compatible schema
 - E.g. MobileAdImpressions
- Dataset instance = dataset class + parameters
 - Immutable
 - E.g. MobileAdImpressions(hour="2016-02-06T13")
Representation - data lake & pipes

- Directory with multiple files
 - Parallel processing
 - Sealed with _SUCCESS (Hadoop convention)
 - Bundled schema format
 - JSON lines, Avro, Parquet
 - Avoid old, inadequate formats
 - CSV, XML
 - RPC formats lack bundled schema
 - Protobuf, Thrift
Directory datasets

- Some tools, e.g. Spark, understand Hive name conventions
Ingress / egress representation

Larger variation:
- Single file
- Relational database table
- Cassandra column family, other NoSQL
- BI tool storage
- BigQuery, Redshift, ...

Egress datasets are also atomic and immutable.
E.g. write full DB table / CF, switch service to use it, never change it.
Schemas

- There is always a schema
 - Plan your evolution
- New field, same semantic == compatible change
- Incompatible schema change => new dataset class
- Schema on read - assumptions in code
 - Dynamic typing
 - Quick schema changes possible
- Schema on write - enumerated fields
 - Static typing & code generation possible
 - Changes must propagate down pipeline code
Schema on read or write?

Production stability important here

Change agility important here

Service

DB

Export

Service

DB

Business intelligence
Batch processing

Gradual refinement

1. Wash
 - time shuffle, dedup, ...

2. Decorate
 - geo, demographic, ...

3. Domain model
 - similarity, clusters, ...

4. Application model
 - Recommendations, ...

Artifact of business value
E.g. service index

Data lake
Pipeline
Job
Batch job code

● Components should scale up
 ○ **Spark**, (Scalding, Crunch)

● And scale down
 ○ More important!
 ○ Component should support local mode
 ■ Integration tests
 ■ Small jobs - less risk, easier debugging
Language choice

- People and community thing, not a technical thing
- Need for simple & quick experiments
 - Java - too much ceremony and boilerplate
- Stable and static enough for production
 - Python/R - too dynamic
- Scala connects both worlds
 - Current home of data innovation
- Beware of complexity - keep it sane and simple
 - Avoid spaceships: `<|*|> |@| <**>`
Batch job

Job == function([input datasets]): [output datasets]

- No orthogonal concerns
 - Invocation
 - Scheduling
 - Input / output location
- Testable
- No other input factors
- No side-effects
- Ideally: atomic, deterministic, idempotent
Batch job class & instance

- Pipeline equivalent of Command pattern
- Parameterised
 - Higher order, c.f. dataset class & instance
 - Job instance == job class + parameters
 - Inputs & outputs are dataset classes
- Instances are ideally executed when input appears
 - Not on cron schedule
Pipelines

- Things will break
 - Input will be missing
 - Jobs will fail
 - Jobs will have bugs
- Datasets must be rebuilt
- Determinism, idempotency
- Backfill missing / failed
- Eventual correctness
Workflow manager

- Dataset “build tool”
- Run job instance when
 - input is available
 - output missing
 - resources are available
- Backfill for previous failures
- DSL describes DAG
- Includes ingress & egress

Luigi, (Airflow, Pinball)
Pattern Libraries for Data Science (Luigi)

- **Expressive, embedded DSL** - a must for ingress, egress
 - Avoid weak DSL tools: Oozie, AWS Data Pipeline

DSL DAG example (Luigi)

```python
class ClientActions(SparkSubmitTask):
    hour = DateHourParameter()
    def requires(self):
        return [Actions(hour=self.hour - timedelta(hours=h)) for h in range(0, 12)] + 
             [UserDB(date=self.hour.date)]
    ...

class ClientSessions(SparkSubmitTask):
    hour = DateHourParameter()
    def requires(self):
        return [ClientActions(hour=self.hour - timedelta(hours=h)) for h in range(0, 3)]
    ...

class SessionsABResults(SparkSubmitTask):
    hour = DateHourParameter()
    def requires(self):
        return [ClientSessions(hour=self.hour), ABExperiments(hour=self.hour)]
    def output(self):
        return HdfsTarget("hdfs://production/red/ab_sessions/v1/" + 
                            "{:year=%Y/month=%m/day=%d/hour=%H}.format(self.hour))
    ...
```
Egress datasets

- **Serving**
 - Precomputed user query answers
 - Denormalised
 - **Cassandra**, (many)

- **Export & Analytics**
 - **SQL** (single node / Hive, Presto, ..)
 - Workbenches (Zeppelin)
 - (Elasticsearch, proprietary OLAP)

- **BI / analytics tool needs change frequently**
 - Prepare to redirect pipelines
Test strategy considerations

● **Developer productivity is the primary value of test automation**
● Test at stable interface
 ○ Minimal maintenance
 ○ No barrier to refactoring
● Focus: single job + end to end
 ○ Jobs & pipelines are pure functions - easy to test
● Component, unit - only if necessary
 ○ Avoid dependency injection ceremony
Testing single job

1. Generate input
2. Run in local mode
3. Verify output

- Tool-specific frameworks, e.g. for Spark?
 - Usable, but rarely cover I/O - home of many bugs.
 - Tied to processing technology

Don’t commit - expensive to maintain. Generate / verify with code.

Runs well in CI / from IDE
Testing pipelines - two options

A: Standard Scalatest harness

1. Generate input
2. Run custom multi-job
3. Verify output

Test job with sequence of jobs

- file://test_input/
- file://test_output/

<table>
<thead>
<tr>
<th>+ Runs in CI</th>
<th>+ Runs in IDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Quick setup</td>
<td>- Multi-job maintenance</td>
</tr>
</tbody>
</table>

B: Customised workflow manager setup

<table>
<thead>
<tr>
<th>+ Tests workflow logic</th>
<th>+ More authentic</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Workflow mgr setup for testability</td>
<td>- Difficult to debug</td>
</tr>
<tr>
<td>- Dataset handling with Python</td>
<td></td>
</tr>
</tbody>
</table>

● Both can be extended with Kafka, egress DBs
Deployment

Hg/git repo

Luigi DSL, jars, config

All that a pipeline needs, installed atomically

my-pipe-7.tar.gz

HDFS

> pip install my-pipe-7.tar.gz

* 10 * * * bin/my_pipe_daily \
--backfill 14

Redundant cron schedule, higher frequency + backfill (Luigi range tools)

Luigi daemon

Worker

Spark
Continuous deployment

- Poll and pull latest on worker nodes
 - `virtualenv package/version`
 - No need to sync environment & versions
 - `Cron package/latest/bin/*`
 - Old versions run pipelines to completion, then exit

```
Hg/git repo
Luigi DSL, jars, config

my-pipe-7.tar.gz

HDFS
```

```
my_cd.py hdfs://pipelines/

> virtualenv my_PIPE/7
> pip install my-pipe-7.tar.gz

* 10 * * * my_pipe/7/bin/*

Worker
```
Start lean: assess needs

Your data & your jobs:
A. Fit in one machine, and will continue to do so
B. Fit in one machine, but grow faster than Moore’s law
C. Do not fit in one machine

- Most datasets / jobs: A
 - Even at large companies with millions of users
- cost(C) >> cost(A)
- Running A jobs on C infrastructure is expensive
Lean MVP

- Start simple, lean, end-to-end
 - *No parallel cluster computations necessary?*
 - Custom jobs or local Spark/Scalding/Crunch
- Shrink data
 - Downsampling
 - Approximate algorithms (e.g. Count-min sketch)
- Get workflows running
 - Serial jobs on one/few machines
 - Simple job control (Luigi only / simple work queue)
Scale carefully

- Get end-to-end workflows in production for evaluation
 - Improvements driven by business value, not tech
- Keep focus small
 - Business value
 - Privacy needs attention early
- Keep iterations swift
 - Integration test end-to-end
 - Efficient code/test/deploy cycle
- Parallelise jobs only when forced
Protecting privacy in practice

- Removing old personal identifiable information (PII)
- Right to be forgotten
- Access control to PII data
- Audit of access and processing

- PII content definition is application-specific
- PII handling subject to business priorities
 - But you should have a plan from day one
Data retention

- Remove old, promote derived datasets to lake
PII removal

Key on PII => difficult to wash

Must rebuild downstream datasets regularly
 ○ In order for PII to be washed in x days
Simple PII audit

● Classify PII level
 ○ Name, address, messages, ...
 ○ IP, city, ...
 ○ Total # page views, ...

● Tag datasets and jobs in code

● Manual access through gateway tool
 ○ Verify permission, log
 ○ Dedicated machines only

● Log batch jobs
 ○ Deploy with CD only, log hg/git commit hash
Parting words + sales plug

Keep things simple; batch, homogeneity & little state
Focus on developer code, test, debug cycle - end to end
Harmony with technical ecosystems
Little technology overlap with yesterday - follow leaders
Plan early: Privacy, retention, audit, schema evolution

Please give feedback -- mapflat.com/feedback

I help companies plan and build these things
Bonus slides
Cloud or not?

+ Operations
+ Security
+ Responsive scaling
 - Development workflows
 - Privacy
 - Vendor lock-in
Security?

- Afterthought add-on for big data components
 - E.g. Kerberos support
 - Always trailing - difficult to choose global paradigm

- Container security simpler
 - Easy with cloud
 - Immature with on-premise solutions?
Data pipelines example

- Users
- Page views
- Sales
- Views with demographics
- Sales with demographics
- Conversion analytics
- Sales reports
Form teams that are driven by business cases & need
Forward-oriented -> filters implicitly applied
Beware of: duplication, tech chaos/autonomy, privacy loss
Conway’s law

“Organizations which design systems ... are constrained to produce designs which are copies of the communication structures of these organizations.”

Better organise to match desired design, then.
Personae - important characteristics

Architect
- Technology updated
- Holistic: productivity, privacy
- Identify and facilitate governance

Backend developer
- Simplicity oriented
- Engineering practices obsessed
- Adapt to data world

Data scientist
- Capable programmer
- Product oriented

Product owner
- Trace business value to upstream design
- Find most ROI through difficult questions

Manager
- Explain what and why
- Facilitate process to determine how
- Enable, enable, enable

Devops
- Always increase automation
- Enable, don’t control
Protect production servers

+ Online service is safe
- Replication may be out of sync
- Cluster storage may be write unavailable

=> Delayed, inaccurate snapshot
Deterministic slaves

+ Deterministic
- Ad-hoc solution
- Serial => not scalable

+ Standard procedure
- Serial or resource consuming
PII privacy control

● Simplify with coarse classification (red/yellow/green)
 ○ Datasets, potentially fields
 ○ Separate production areas

● Log batch jobs
 ○ Code checksum -> commit id -> source code
 ○ Tag job class with classification
 ■ Aids PII consideration in code review
 ■ Enables ad-hoc verification
Audit

- Audit manual access
- Wrap all functionality in gateway tool
 - Log datasets, output, code used
 - Disallow download to laptop
 - Wrapper tool happens to be great for enabling data scientists, too - shields them from operations.