
Making ES6 available to all with ChakraCore

 Chris Heilmann @codepo8, JFokus, Stockholm, February 2015

Of innovation and impatience

 Chris Heilmann @codepo8, Future Decoded, London, Nov 2015

CHRIS HEILMANN
@CODEPO8

LET’S TALK
JAVASCRIPT…

• Old issues
• The learning process
• The library/framework issue
• The ES6 buffet
• Standards and interop
• Breaking monopolies

OLD ISSUES OF JAVASCRIPT

JAVASCRIPT CLIENT-
SIDE HAS ISSUES…

• It is not fault-tolerant
• Many different parties mess with it
• You don’t know the environment it

runs in
• It has always been part of the

browser and dependent on its
release and upgrade cycle

JAVASCRIPT THE
LANGUAGE HAS
ISSUES
(OPPORTUNITIES)…

• typeof NaN === number
• No type safety
• No classes
• “it feels rushed”

ENGINE TROUBLE:
JAVASCRIPT IS
HUNGRY

HTTPS:// .WTF

THE JAVASCRIPT LEARNING PROCESS

THE JAVASCRIPT
LEARNING PROCESS
HAS ALWAYS BEEN
INTERESTING…

• Use view source to see what
others are doing…

• Copy and paste the bits that
look like they are responsible
for some things

• Change some numbers around
• Run into errors
• Blame Internet Explorer

THIS, OF COURSE,
WAS WRONG AND
WE GOT MORE
PROFESSIONAL…

• Search for a solution on
Stackoverflow

• Copy and paste the bits that
look like they are responsible
for some things

• Change some numbers around
• Run into errors
• Blame JavaScript for being

terrible and not a real language
• For good measure, blame

Internet Explorer.

IT’S TRUE…

BUT OF COURSE IT CAN
BE IMPROVED…

WITH ES6 WE HAVE
A CLEAN NEW
SLATE…
(AND YOU CAN’T BLAME IE ANY MORE)

SEE THE BABEL.JS DOCS AND TRY IT IN THE BROWSER…

https://babeljs.io/docs/learn-es2015/

https://babeljs.io/docs/learn-es2015/

350 BULLET POINTS

https://babeljs.io/docs/learn-es2015/

https://babeljs.io/docs/learn-es2015/

READ THE
EXCELLENT BOOK
EXPLORING ES6
FOR FREE
(OR BUY IT, AXEL DESERVES SUPPORT)

http://exploringjs.com/es6/

THE LIBRARY/FRAMEWORK ISSUE…

JAVASCRIPT ABUSE IS
RAMPANT…

SHOULD WE BUILD
EVERYTHING FROM
SCRATCH?

OLD ISSUES, NOW IN
THE NEXT LANGUAGE…

IS DEPENDENCY HELL
A PROBLEM OF THE
TOO PRIVILEGED?

https://www.youtube.com/watch?v=PA139CERNbc

Stephan Bönnemann (JSConfEU 2015):
Dependency Hell Just Froze Over

https://www.youtube.com/watch?v=PA139CERNbc

WE’RE GOING
FULL SPEED ON
INNOVATION…

• Componentised Web
• Extensible Web Manifesto
• WebGL
• WebAssembly/ASM.js
• PostCSS
• Progressive Apps

• We work around browser issues
• We make web standards of

tomorrow work today.
• We build solutions to clean up

others and make them smaller
• And each of those comes with

a “don’t use in production”
label.

BUILDING LIBRARIES
AND FRAMEWORKS
THAT MAGICALLY
FIX THINGS HAS
BECOME
FASHIONABLE…

NSFW

THAT’S COOL -
GO NUTS AND
PLAY WITH ANY
TECHNOLOGY
YOU WANT…

FRAMEWORKS
ARE GREAT…

• They are fun to use - achieve a
lot very quickly

• You build complex apps in a
matter of minutes

• They work around pesky
browser bugs

• They are good on your CV

…BUT THEY ALSO
COME WITH
DEVELOPER COST

• Learning new frameworks
• Re-learning new frameworks
• Debugging frameworks
• Setting up developer

environments
• Cutting down on possible hires/

adding to onboarding time

AND WE SHOULD
CONSIDER THE
EFFECTS WE HAVE
ON OUR END
USERS…

• Time to load / execute
• Bandwidth used
• CPU usage
• Frame rate (60 fps)
• Memory usage
• Battery hunger

HOMEWORK / SNEAK
PREVIEW OF GREAT
INSIGHTS…

PAUL LEWIS
@AEROTWIST

THE DOM IS SLOW?

ANALYSING
BROWSER RESULTS…

npm install -g bigrig
github.com/GoogleChrome/big-rig
github.com/GoogleChrome/node-big-rig

http://github.com/GoogleChrome/big-rig

WE USE CODE WE
DON’T UNDERSTAND
TO FIX ISSUES WE
DON’T HAVE…

• Learning libraries and
frameworks beyond “hello
world” costs time and money.

• Time you don’t spend on
looking at optimising your code

• In essence, we value developer
convenience over user
experience.

THE ES6 BUFFET…

1997 2015
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

1997
ECMAScript1

1998
ECMAScript2

1999
ECMAScript3

2005 - 2007
ECMAScript4 - Abandoned

2009
ECMAScript5

2015
ECMAScript6

JAVASCRIPT EVOLVES…

1997 2015
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

1997
ECMAScript1

1998
ECMAScript2

1999
ECMAScript3

2005 - 2007
ECMAScript4 - Abandoned

2009
ECMAScript5

2015
ECMAScript6

…NOW WE HAVE ES6!

• 5+ years since ES5 ratification
• Significant changes in 15+ years
• Backwards compatible
• Ratified June 2015

http://www.ecma-international.org/publications/standards/Ecma-262.htm

this IS COMPLICATED *** ***

this IS COMPLICATED

*** ***

blog.getify.com/arrow-this/

this IS COMPLICATED

*** ***

blog.getify.com/arrow-this/

this IS COMPLICATED

*** ***

blog.getify.com/arrow-this/

this IS COMPLICATED

*** ***

blog.getify.com/arrow-this/

SAVING KEYSTROKES

• Arrow functions as a short-hand version of an
anonymous function.

• Block-level scope using let instead of var makes
variables scoped to a block (if, for, while, etc.)

• Classes to encapsulate and extend code.
• Constants using the const keyword.
• Default parameters for functions like foo(bar = 3, baz =

2)
• Destructuring to assign values from arrays or objects

into variables.
• Generators that create iterators using function* and

the yield keyword.
• Map, a Dictionary type object that can be used to store

key/value pairs. and Set as a collection object to store
a list of data values.

• Modules as a way of organizing and loading code.
• Promises for async operations avoiding callback hell
• Rest parameters instead of using arguments to access

functions arguments.
• Template Strings to build up string values including

multi-line strings.

ES6 COMES WITH SO
MUCH GOODNESS,
TECHNICALLY IT HAS
TO BE FATTENING…

Library Builders

map, set & weakmap
__proto__
Proxies
Symbols

Sub7classable built7ins

Scalable Apps

let, const & block7
scoped bindings

Classes
Promises
Iterators

Generators
Typed arrays

Modules

Syntactic Sugar

Arrow functions
Enhanced object literals

Template strings
Destructuring

Rest, Spread, Default
String, Math, Number,
Object, RegExp APIs

ALL OF THESE PARTS HAVE DIFFERENT AUDIENCES

SUPPORT IS ENCOURAGING (EDGE, FIREFOX, CHROME, SAFARI (ON 9))

http://kangax.github.io/compat-table/es6/

THE PROBLEM: FOR
NON-SUPPORTING
ENGINES, ES6
FEATURES ARE
SYNTAX ERRORS…

THE SOLUTION: TRANSPILING INTO ES5…

https://babeljs.io
• Converts ES6 to older versions on the server or the client
• In use by Facebook and many others
• Used in editors and tool chains

https://babeljs.io

✘ Extra step between writing code
and running it in the browser.

✘ We don’t run or debug the code
we write.

✘ We hope the transpiler creates
efficient code

✘ We create a lot of code
✘ Browsers that support ES6 will

never get any.

THE PROBLEMS WITH
TRANSPILING:

TRANSPILED CODE…

THE VICIOUS
INNOVATION CYCLE…

https://github.com/samccone/The-cost-of-transpiling-es2015-in-2016

PICK YOUR TRANSPIRATION TOOLCHAIN…

THE ES6
CONUNDRUM…

• We can’t use it safely in the wild
• We can use TypeScript or transpile it
• We can feature test for it, but that can

get complex quickly
• Browsers that support it, will not get

any ES6 that way (but can use it
internally)

• The performance is bad right now
(which is a normal thing). To improve
this, we need ES6 to be used in the
wild…

http://www.sitepoint.com/the-es6-conundrum/

STANDARDS AND INTEROP

WHAT DOES THIS CODE DO?

REPLACING BUILT-IN
FUNCTIONALITY
FOR THE SAKE OF
CONTROL…

SIMPLY BECAUSE WE CAN FIX ANYTHING WITH
JAVASCRIPT DOES NOT MEAN WE SHOULD!

THE COMPATIBILITY RACE…

THE VICIOUS
INNOVATION CYCLE…

OUT OF THE BOX BROWSER
DO NOT SUCK ANY LONGER!

COMPATIBILITY IS ON
EVERY BROWSER
MAKER’S RADAR…

BREAKING MONOPOLIES

NEW BROWSER, NEW JS ENGINE

SPEED COMPARISONS…

SURPRISES HAPPEN…

CHAKRACORE VS CHAKRA

HTTPS:// .WTF

TIME TRAVEL DEBUGGING

https://www.youtube.com/watch?v=1bfDB3YPHFI

https://www.youtube.com/watch?v=1bfDB3YPHFI

NODE USING CHAKRACORE

https://blogs.windows.com/msedgedev/2016/01/19/nodejs-chakracore-mainline/

NODE USING CHAKRACORE

https://blogs.windows.com/msedgedev/2016/01/19/nodejs-chakracore-mainline/

NODE USING CHAKRACORE

https://blogs.windows.com/msedgedev/2016/01/19/nodejs-chakracore-mainline/

https://github.com/Microsoft/ChakraCore

COME AND PLAY

THANKS!
CHRIS HEILMANN

@CODEPO8

CHRISTIANHEILMANN.COM

http://christianheilmann.com

