
Copyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

JavaScript
Immutability

https://github.com/mvolkmann/react-examples/Immutable

Don’t Go Changing
Mark Volkmann, Object Computing, Inc.
Email: mark@ociweb.com

Twitter: @mark_volkmann

GitHub: mvolkmann
Website: http://ociweb.com/mark

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Intro.

What is OCI?
new home of Grails, 
“An Open Source high-productivity framework for building fast and scalable web applications”

Open Source Transformation Services, IIoT, DevOps

offsite development, consulting, training

handouts available (includes Grails sticker)

What does this talk have to do with Billy Joel 
and the song “Just the Way You Are”?

Three parts
What is immutability and how is it implemented?

What are the options in JavaScript?

Overview of API for one option and examples

2

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Immutability Defined

Immutable values cannot be modified after creation

In many programming languages, strings are immutable
methods on them return new versions rather than modifying original

Data structures can also be immutable

Rather than modifying them, create a new version

Naive approach - copying original and modify copy

We can do better!

3

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Persistent Data Structures

Wikipedia says “a data structure that always preserves  
the previous version of itself when it is modified”

Uses structural sharing to efficiently create new versions  
of data structures like lists and maps

Typically implemented with
index tries

hash array map tries (HAMT)

Slower and uses more memory than operating on mutable data structures
but fast enough for most uses

Explained well in video “Tech Talk: Lee Byron on Immutable.js”
Lee Byron is at Facebook

https://www.youtube.com/watch?v=kbnUIhsX2ds&list=WL&index=34

Uses Directed Acyclic Graphs (DAGs)

4

It’s not necessary to understand how these work
to take advantage a library that uses them.

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

DAGs
Can be used to represent a list

Diagrams show new version of list created for new value of node G

5

note the structural
sharing that results

every time a node is
added or modified,
make a copy of all
ancestor nodes and
return the top one

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Tries

A trie is a special kind of DAG
name taken from “reTRIEval”

correct pronunciation is “tree”, 
but many say “try” because  
computer science already has something called a tree

We’ll discuss two types
index trie used to model arrays

hash array mapped trie (HAMT) used to model sets and maps

6

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Index Trie ...

Nodes are fixed-size arrays of pointers to other nodes or values
store value “foo” at index 53

53 in binary is 110101

starting from least significant bits, 
the pairs are 01, 01, and 11  
or node indexes 1, 1, and 3

use same process to lookup 
a value at a given index

typically node size is 64 instead of 4 
to match hardware “word” size

7

least significant bits tend
to be more random

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

... Index Trie

To set a new value at a given index, 
use the DAG approach described earlier  
to create new versions of existing nodes 
so those remain unchanged

Ditto for marking a value “undefined”  
or popping a value from end

Values can only be efficiently removed or inserted at end
not at beginning or in middle because  
indexes of other values would have to change

8

Recall that JS arrays are modeled as objects.
The Array shift method is not efficient.
See pseudocode at https://tc39.github.io/
ecma262/#sec-array.prototype.shift.

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Hash Array Mapped Trie ...

Used to model sets, maps, and objects
maps are collections of key/value pairs

think of sets as collections of keys

Similar to an index trie

Invented by Phil Bagel and iterated on by Rich Hickey

Instead of array indexes, hash codes of keys are used
need way to compute hash code for strings

no hash code functions are provided by JavaScript

some approaches are documented at  
http://erlycoder.com/49/javascript-hash-functions-to-convert-string-into-integer-hash-

if keys of other primitive types (boolean and number) are allowed, 
can use toString method to convert to a string and hash that

if object keys are allowed, hash code can be computed by  
some combination of hash codes of its property values

9

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

... Hash Array Mapped Trie ...

Node array values (“slots”) have three possibilities
empty (undefined)

reference to another trie node

reference to linked list node

holds previous/next references to other linked list nodes and entry reference

previous/next references support having a linked list of objects  
for when more than one key has same hash code  
(shouldn’t happen frequently, but can’t rule out)

entry objects hold key, value, and hash code of key

when traversal leads to a list of objects, 
linear search finds correct one by key

Adding or removing an entry
results in a new HAMT that uses structural sharing with previous version

when copying a trie node, can copy references to existing linked list nodes

10

see picture on next slide

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

... Hash Array Mapped Trie

Level optimization
when storing a value, 
if an empty slot is reached, 
store value there, 
using a subset of hash code bits

later if another value  
ends up at that same slot, 
move both along deeper  
until subset of hash code bits differ

but need to compare  
key value on lookup

Existing value optimization
if a key is set to its existing value, 
return same structure

11

For even more detail, see the book
“Purely Functional Data Structures”
by Chris Okazaki

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Immutable Pros

Some side effects avoided
can pass immutable values to a function and know it cannot modify them

Pure functions easier to write
can pass an object and return an efficiently modified version

Fast change detection
rather than deep comparison, can just compare object references

in JavaScript, use ===

Immutable data can be safely cached
no possibility of code changing it after it has been cached

Easier to implement undo
keep a list of past values and reset to one of them

but doesn’t undo changes to persistent stores like databases

Concurrency
can share data between threads without concern over concurrent access

12

not a concern in JavaScript

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Immutable Cons

Performance
takes longer to create a new version of a persistent data structure 
than to mutate a mutable data structure like an array or map

takes longer to lookup a value in a persistent data structure  
than in a mutable data structure like an array or map

Memory
structural sharing uses more memory than mutable data structures

Learning curve
can’t use standard JavaScript API for collections  
(Array, Object, Set, Map)

must learn new API

13

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

React and Immutability

React (“JavaScript library for building user interfaces”) 
favors immutable objects

Should not modify properties in state objects

Instead, create a new object and 
pass to setState method of components

or use Redux to manage state

Manually creating a modified copy of state is  
tedious, error prone, and expensive in terms of memory

Better to use an immutability library 
that utilizes structural sharing

14

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Options ...

Be careful
write code that avoids mutations

Immutability helpers
from React team

https://facebook.github.io/react/docs/update.html

doesn’t use structural sharing (a.k.a. persistent data structures)

seamless-immutable
from Richard Feldman

https://github.com/rtfeldman/seamless-immutable

doesn’t use structural sharing

15

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

... Options

Mori
from David Nolan

https://github.com/swannodette/mori 
and http://swannodette.github.io/mori/

uses structural sharing

Clojure persistent data structures ported to JavaScript

Immutable
from Lee Byron at Facebook

https://facebook.github.io/immutable-js/

uses structural sharing

great overview from React.js Conf 2015 
“Immutable Data and React” by Lee Byron of Facebook 
https://www.youtube.com/watch?v=I7IdS-PbEgI

we will mainly focus on this

16

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Being Careful

Add element to end of array
ES6: newArr = [...oldArr, elem]

Insert element at index in array
ES6: newArr = [...oldArr.slice(0, index), elem, ...oldArr.slice(index)]

Remove element at index from array
ES6: newArr = [...oldArr.slice(0, index), ...oldArr.slice(index + 1)]

Modify element at index in array
ES6: newArr = [...oldArr.slice(0, index), newElem, ...oldArr.slice(index + 1)]

Modify or add property in object
ES6: newObj = Object.assign({}, oldObj, {propName: propValue});

ES7: newObj = {...oldObj, propName: propValue};

17

consider using deep-freeze to 
prevent accidental mutations
https://github.com/substack/deep-freeze

uses object spread operator

This road leads to madness!

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Immutability Helpers

https://facebook.github.io/react/docs/update.html
see examples here

Install with npm install --save-dev react-addons-update

Usage

Object commands
$set: value - replaces target value with specified value (no $unset, but it has been proposed)

$merge: obj - replace target object with result of merging properties in obj with current value

$apply: fn - replaces target value with result of fn when passed current value

Array Commands
$push: arr - adds all elements in arr to end of target array

$unshift: arr - adds all elements in arr to beginning of target array

$splice: arr - each arr element is an array of splice arguments; 
creates new array from target by calling splice with each set of arguments

18

const update = require('react-addons-update');
const newObj = update(oldObj, changes);

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

seamless-immutable

Creates objects that are backward-compatible  
with JS Arrays and Objects

Efficiently copies objects by reusing existing nested objects  
whose properties aren’t changed

Operates differently depending whether built for development or production
development - objects are frozen; overrides methods that normally mutate to throw

production - assumes code has been tested in development mode  
and favors performance by not doing these things

Immutable function takes any object and 
returns a backward-compatible, immutable version

Doesn’t work with objects that contain circular references

Adds methods to immutable objects: merge, without, asMutable

Adds methods to immutable arrays: flatMap, asObject, asMutable

19

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Mori

Uses Clojure terminology
such as assoc, dissoc, conj, transduce, and vector

Used in ClojureScript
can also be used in JavaScript

Uses structural sharing

Faster than other libraries

Has a functional API
data structures are passed to functions  
rather than having methods on them in OO-style

Larger library than Immutable
after gzipping both, Mori 2.4 times as large as Immutable

20

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Immutable

“Inspired by inspired by Clojure, Scala, Haskell 
and other functional programming environments”

API mirrors ES6 Array, Map, and Set methods
but methods that mutate in ES6 return an immutable copy instead

ex. Array methods push, pop, unshift, shift, splice

Uses structural sharing
makes copying more efficient  
in both performance and memory usage

Provides many immutable classes
listed on “Collection Types” slide ahead

Remaining slides focus on this library

21

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Setup

To install, 
npm install --save immutable

To use in ES5 browser code, 
<script src="node-modules/immutable/dist/immutable.min.js"></script>

To use in ES6 browser code, 
import Immutable from 'immutable';

To use in Node code, 
const Immutable = require('immutable');

22

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Collection Types
see documentation at http://facebook.github.io/immutable-js/docs

Map and OrderedMap
similar to ES6 Map

OrderedMap iteration order  
matches order added

List

similar to JavaScript Array

Set and OrderedSet
similar to ES6 Set

OrderedSet iteration order  
matches order added

Stack

singly linked list

efficient addition and removal at front

Record

“creates a new class which produces Record
instances ... similar to a JS object”

Iterables
Iterable, KeyedIterable,
IndexedIterable, SetIterable

all are ES6 iterables

Sequences
Seq, KeyedSeq, IndexedSeq, SetSeq

support lazy evaluation

Collection base classes
Collection, KeyedCollection,
IndexedCollection, SetCollection

23

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Nesting

Can nest immutable objects
ex. immutable Map with properties whose values are immutable List objects

It can be confusing and error prone  
to use non-immutable values  
(such as standard JavaScript objects and arrays) 
as values in immutable structures

be consistent!

24

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

JS to Immutable

To convert an Object or Array to an immutable Map or List, 
const immObj = Immutable.fromJS(mutObj);

To customize the conversion and choose the collection types to be used, 
const immObj = Immutable.fromJS(mutObj, (key, value) => {  
 // Only called for non-primitive values. 
 // value will be a Seq object.  
 // Return an immutable object.  
});

25

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Immutable to JS

To convert an immutable object to a JavaScript Object or Array, 
const mutObj = immObj.toJS();

Resist the urge to do this just so values can 
be accessed in a standard JavaScript way

less efficient than using methods on immutable objects

26

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Working With Maps ...

To create
const map = Immutable.Map();

can pass many kinds of things to initialize

const map = Immutable.fromJS(jsObject);

makes deep copy where all values are immutable

objects -> Maps; arrays -> Lists

To set top-level key value
const newMap = map.set(key, value);

To set deeper key value
const newMap = map.setIn([key-path], value);

To get top-level key value
const value = map.get(key);

To get deeper key value
const value = map.getIn([key-path]);

27

key-path is an ordered array of keys;
ex. ['work', 'address', 'city']

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

... Working With Maps ...

To update top-level key value
const newMap = map.update(key, fn);

value at key is passed to fn and return value becomes new value

To update deeper key value
const newMap = map.updateIn([key-path], fn);

value at key-path is passed to fn and return value becomes new value

To delete top-level key/value pair
const newMap = map.delete(key);

To delete deeper key/value pair
const newMap = map.deleteIn([key-path]);

28

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

... Working With Maps

To iterate over
keys - const iter = map.keys();

values - const iter = map.values();

entries - const iter = map.entries();

value returned from each of these is an ES6 iterable, 
so can use with ES6 for-of loop

There are MANY more methods on Map listed later

Working with other kinds of collections is similar

29

entries are [key, value] arrays

for (const entry of teams.entries()) { ... }

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Map API Examples

30

import Immutable from 'immutable';

let person = Immutable.fromJS({
 name: 'Moe Howard',
 address: {
 street: '123 Some Street',
 city: 'Somewhere',
 state: 'MO',
 zip: 12345
 }
});

person = person.set('name', 'Larry Fine');
person = person.setIn(['address', 'city'], 'Los Angeles');
console.log('name =', person.get('name'));
console.log('city =', person.getIn(['address', 'city']));
person = person.deleteIn(['address', 'street']);
person = person.updateIn(['address', 'zip'], zip => zip + 1);
console.log(person.toJS());

Output

name = Larry Fine
city = Los Angeles
{
 name: 'Larry Fine',
 address: {
 zip: 12346,
 city: 'Los Angeles’,
 state: ‘MO'
 }
}

can chain all calls that
create a new version

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Multiple Mutations

When modifying multiple properties in an immutable object, 
it can be more efficient to make them on a mutable version 
and then create an immutable version from that

avoids creating multiple new, immutable objects

withMutations method does this
call on an immutable object

pass a function that will be invoked with a mutable version of it

returns a new, immutable object

31

person = person.withMutations(mutPerson =>
 mutPerson.set('name', 'Larry Fine').
 setIn(['address', 'city'], 'Los Angeles').
 deleteIn(['address', 'street']).
 updateIn(['address', 'zip'], zip => zip + 1));

alternate version of
code on previous slide

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Working With Lists

See example code on next slide

List class has MANY more methods  
than are demonstrated

32

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

List API Examples

33

let numbers = Immutable.fromJS([10, 20, 30]);
console.log(numbers.get(1)); // 20
console.log(numbers.first()); // 10
console.log(numbers.last()); // 30
console.log(numbers.has(2), numbers.includes(2)); // true, false
console.log(numbers.has(20), numbers.includes(20)); // false, true
numbers = numbers.push(40); // [10, 20, 30, 40]
numbers = numbers.pop(); // [10, 20, 30]
numbers = numbers.unshift(0); // [0, 10, 20, 30]
numbers = numbers.shift(); // [10, 20, 30]
numbers = numbers.set(1, 7); // [10, 7, 30]
numbers = numbers.delete(1); // [10, 30]
numbers = numbers.update(1, n => n * 2); // [10, 60]
numbers = numbers.splice(1, 0, 20, 30, 40, 50); // [10, 20, 30, 40, 50, 60]

let people = Immutable.fromJS([
 {name: 'Mark', height: 74, occupation: 'software engineer'},
 {name: 'Tami', height: 64, occupation: 'vet receptionist'}
]);
console.log(people.getIn([0, 'occupation'])); // software engineer
people = people.setIn([1, 'occupation'], 'retired'); // Tami is retired
people = people.deleteIn([1, 'occupation']); // Tami has no occupation
people = people.updateIn([1, 'height'],
 height => height + 1); // Tami's height is 65

// Lists are iterable!
for (const person of people) {
 console.log(person);
}

has method looks for index; 
includes method looks for value

74” ~= 188 cm
64” ~= 163 cm

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Metric System Usage

34

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Seqs

Represent a sequence of values
backed by another data structure when created with 
toSeq, toKeyedSeq, toIndexedSeq, and toSetSeq methods

can create directly with Seq, KeyedSeq, IndexedSeq, and SetSeq constructors

values can be primitives and objects, including other immutable data structures

Immutable
many methods create a new, immutable version: 
concat, map, reverse, sort, sortBy, groupBy, flatten, flatMap

many methods create immutable subsets: 
filter, filterNot, slice, rest (all but first), butLast, 
skip, skipLast, skipWhile, skipUntil, 
take, takeLast, takeWhile, takeUtil

Lazy
“does as little work as necessary to respond to any method call”

see example on next slide

35

Seq has a large API.
This scratches the surface.

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Seq Example

36

const result =
 Immutable.Range(1, Infinity). // all positive integers
 filter(n => n % 7 === 0). // all numbers divisible by 7
 take(3). // just first three: 7, 14, 21
 map(n => n * 2). // double them: 14, 28, 42
 reduce((sum, n) => sum + n); // sum them: 84

Range returns an IndexedSeq of numbers  
from start (inclusive, defaults to 0) 
to end (exclusive, defaults to infinity), 
by step (defaults to 1)

Infinity is a predefined
global variable in JavaScript

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Comparing Objects

To determine if two immutable objects  
contain the same data, 
Immutable.is(immObj1, immObj2)

performs a deep equality check that works as expected 
when comparing nested, immutable objects

unlike Object.is added in ES6  
which does not perform a deep equality check

If one immutable object was created by  
potential modifications on another, 
this can be simplified to  
immObj1 === immObj2

37

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

API Summary

The remaining slides summarize the methods available  
in each of the collection types

It’s a large API!

38

skip to slide 57

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Persistent Changes

39

Map/OrderedMap List Set/OrderedSet Stack Seq

set X X
delete X X X
clear X X X X
update X X
merge X X

mergeWith X X
mergeDeep X X

mergeDeepWith X X
push X X
pop X X

unshift X X
shift X X
setSize X
add X
union X

intersect X
subtract X
pushAll X

unshiftAll X

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Deep Persistent Changes

40

Map/OrderedMap List Set/OrderedSet Stack Seq

setIn X X

deleteIn X X

updateIn X X

mergeIn X X

mergeDeepIn X X

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Transient Changes

41

Map/OrderedMap List Set/OrderedSet Stack Seq

withMutations X X X X

asMutable X X X X

asImmutable X X X X

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Conversion to Seq

42

Map/OrderedMap List Set/OrderedSet Stack Seq

toSeq X X X X

toKeyedseq X X X X

toIndexedSeq X X X X

toSetSeq X X X X

fromEntrySeq X X

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Value Equality

All collection types support these methods
equals

hashCode

43

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Reading Values

44

Map/OrderedMap List Set/OrderedSet Stack Seq

get X X X X X

has X X X X X

includes X X X X X

first X X X X X

last X X X X X

peek X

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Reading Deep Values

All collection types support these methods
getIn

hasIn

45

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Can convert all immutable structures back to standard JS objects

toObject method
returns JS object created from top-level properties of immutable object (shallow)

toArray method
returns JS array created from top-level properties of immutable object (shallow)

toJS method
like toObject, but deep

toJSON method
just an alias for toJS

46

Conversion to JavaScript Types

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Conversion to Collections

All collection types support these methods
toMap

toOrderedMap

toSet

toOrderedSet

toList

toStack

47

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Iterators and Iterables

All collection types support these methods
keys

values

entries

keySeq

valueSeq

entrySeq

48

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Sequence Algorithms

All collection types support these methods
map

filter

filterNot

reverse

sort

sortBy

groupBy

49

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Side Effects

All collection types support this method
forEach

50

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Creating Subsets

All these methods are available on all collection types  
and return an Iterable of same type over a subset of the elements
slice(begin, end) - from begin to just before end

rest() - all but first

butLast() - all but last

skip(n) - all but first n

skipLast(n) - all but last n

skipWhile(predicate) - all starting with first where predicate returns false

skipUntil(predicate) - all starting with first where predicate returns true

take(n) - first n

takeLast(n) - last n

takeWhile(predicate) - initial elements while predicate returns true

takeUntil(predicate) - initial elements until predicate returns true

51

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Combination

52

Map/OrderedMap List Set/OrderedSet Stack Seq

concat X X X X X

flatten X X X X X

flatMap X X X X X

interpose X X

interleave X X

splice X X

zip X X

zipWith X X

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Reducing

All these methods are available on all collection types
reduce(reducer, initialValue) - reduces collection to a single value by 
calling reducer with latest value and an element from collection; reducer returns next value

reduceRight(reducer, initialValue) - same a reduce,  
but elements are passed to reducer in reverse order

every(predicate) - returns boolean indicating whether predicate returns true for every element

some(predicate) - returns boolean indicating whether predicate returns true for any element

join(separator = ',') - returns string formed by concatenating 
the toString value of all elements with separator string between them

isEmpty() - returns boolean indicating whether collection is empty

count(predicate) - returns count of elements where predicate returns true  
or count of all elements if predicate is omitted

countBy(grouper) - returns a KeyedSeq where keys are ? and 
values are Iterables over elements in the same group; 
grouper is passed each element and returns its group

53

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Search for Value

54

Map/OrderedMap List Set/OrderedSet Stack Seq

find X X X X X
findLast X X X X X
findEntry X X X X X

findLastEntry X X X X X
max X X X X X
maxBy X X X X X
min X X X X X
minBy X X X X X
keyOf X

lastKeyOf X
findKey X

findLastKey X
indexOf X X

lastIndexOf X X
findIndex X X

findLastIndex X X

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Comparison

All collection types support these methods
isSubset

isSuperset

55

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Sequence Functions

56

Map/OrderedMap List Set/OrderedSet Stack Seq

flip X

mapKeys X

mapEntries X

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

Summary

Immutability has many benefits and few drawbacks

Persistent data structures are an important feature
avoid immutability libraries that don’t implement these

Immutable is a great library!
learning curve is primarily due to size of API

each piece is relatively simple to learn

57

ImmutabilityCopyright © 2015-2016 by Object Computing, Inc. (OCI)  
All rights reserved

The End

Thanks so much for attending my talk!

Feel free to find me later and ask questions about  
immutability or anything in the JavaScript world

Check out my talk on React tomorrow at 2 PM in room A2

Contact me

58

Mark Volkmann, Object Computing, Inc.

Email: mark@ociweb.com

Twitter: @mark_volkmann
GitHub: mvolkmann

Website: http://ociweb.com/mark

