
© Copyright Azul Systems 2016

© Copyright Azul Systems 2015

@speakjava azul.com

Lambdas & Streams In JDK 8:
Beyond The Basics

Simon Ritter
Deputy CTO, Azul Systems

1

© Copyright Azul Systems 2016

A clever man learns from his
mistakes...

...a wise man learns from
other people’s

© Copyright Azul Systems 2016

Agenda
§  Lambdas and Streams Primer
§  Delaying Execution
§  Avoiding Loops In Streams
§  The Art Of Reduction
§  Lambdas and Streams and JDK 9
§  Conclusions

3

© Copyright Azul Systems 2016

Lambdas And Streams Primer

© Copyright Azul Systems 2016

Lambda Expressions In JDK 8

§  Old style, anonymous inner classes

§  New style, using a Lambda expression

5	

Simplified Parameterised Behaviour

new	Thread(new	Runnable	{	
		public	void	run()	{	
				doSomeStuff();	
		}	
}).start();	

new	Thread(()	->	doSomeStuff()).start();	

© Copyright Azul Systems 2016

Type Inference
§  Compiler can often infer parameter types in a lambda

expression
–  Inferrence based on target functional interface’s method signature

§  Fully statically typed (no dynamic typing sneaking in)
– More typing with less typing

static	T	void	sort(List<T>	l,	Comparator<?	super	T>	c);	
	
List<String>	list	=	getList();	
Collections.sort(list,	(String	x,	String	y)	->	x.length()	>	y.length());	
	
	
Collections.sort(list,	(x,	y)	->	x.length()	-	y.length());	

© Copyright Azul Systems 2016

Functional Interface Definition
§  Is an interface
§  Must have only one abstract method

– In JDK 7 this would mean only one method (like
ActionListener)

§  JDK 8 introduced default methods
– Adding multiple inheritance of types to Java
– These are, by definition, not abstract

§  JDK 8 also now allows interfaces to have static methods
§  @FunctionalInterface to have the compiler check

7	

© Copyright Azul Systems 2016

Is This A Functional Interface?

8	

@FunctionalInterface	
public	interface	Runnable	{	
		public	abstract	void	run();	
}

Yes. There is only
one abstract
method

© Copyright Azul Systems 2016

Is This A Functional Interface?

9	

@FunctionalInterface	
public	interface	Predicate<T>	{	
		default	Predicate<T>	and(Predicate<?	super	T>	p)	{…};	
		default	Predicate<T>	negate()	{…};	
		default	Predicate<T>	or(Predicate<?	super	T>	p)	{…};	
		static	<T>	Predicate<T>	isEqual(Object	target)	{…};	
		boolean	test(T	t);	
}

Yes. There is still
only one abstract
method

© Copyright Azul Systems 2016

Is This A Functional Interface?

10	

@FunctionalInterface	
public	interface	Comparator	{	
		//	Static	and	default	methods	elided	
		int	compare(T	o1,	T	o2);	
		boolean	equals(Object	obj);	
}

The equals(Object)	
method is implicit
from the Object class

Therefore only one
abstract method

© Copyright Azul Systems 2016

Stream Overview
§  A stream pipeline consists of three types of things

– A source
– Zero or more intermediate operations
– A terminal operation

§ Producing a result or a side-effect

int	total	=	transactions.stream()	
		.filter(t	->	t.getBuyer().getCity().equals(“London”))	
		.mapToInt(Transaction::getPrice)	
		.sum();	

Source

Intermediate operation
Terminal operation

© Copyright Azul Systems 2016

Stream Sources

§  From collections and arrays
– Collection.stream()	
– Collection.parallelStream()	
– Arrays.stream(T	array) or Stream.of()	

§  Static factories
– IntStream.range()	
– Files.walk()	

Many Ways To Create

© Copyright Azul Systems 2016

Stream Terminal Operations
§  The pipeline is only evaluated when the terminal operation

is called
– All operations can execute sequentially or in parallel
– Intermediate operations can be merged

§ Avoiding multiple redundant passes on data
§ Short-circuit operations (e.g. findFirst)
§ Lazy evaluation

– Stream characteristics help identify optimisations
§ DISTINT stream passed to distinct() is a no-op

© Copyright Azul Systems 2016

Optional Class
§  Terminal operations like min(), max(), etc do not return a

direct result
§  Suppose the input Stream is empty?
§  Optional<T>	

– Container for an object reference (null, or real object)
– Think of it like a Stream of 0 or 1 elements
– use get(), ifPresent() and orElse() to access the

stored reference
– Can use in more complex ways: filter(), map(), etc

§  gpsMaybe.filter(r	->	r.lastReading()	<	2).ifPresent(GPSData::display);	

© Copyright Azul Systems 2016

LambdaExpressions And
Delayed Execution

© Copyright Azul Systems 2016

Performance Impact For Logging
§  Heisenberg’s uncertainty principle

§  Setting log level to INFO still has a performance impact
§  Since Logger determines whether to log the message the

parameter must be evaluated even when not used

16

logger.finest(getSomeStatusData());

Always executed

© Copyright Azul Systems 2016

Supplier<T>
§  Represents a supplier of results
§  All relevant logging methods now have a version that takes

a Supplier

§  Pass a description of how to create the log message
– Not the message

§  If the Logger doesn’t need the value it doesn’t invoke the
Lambda

§  Can be used for other conditional activities
17

logger.finest(getSomeStatusData()); logger.finest(()	->	getSomeStatusData());

© Copyright Azul Systems 2016

Avoiding Loops In Streams

© Copyright Azul Systems 2016

Functional v. Imperative
§  For functional programming you should not modify state
§  Java supports closures over values, not closures over

variables
§  But state is really useful…

19

© Copyright Azul Systems 2016

Counting Methods That Return Streams

20

Still Thinking Imperatively

Set<String>	sourceKeySet	=				
		streamReturningMethodMap.keySet();	
	
LongAdder	sourceCount	=	new	LongAdder();	
	
sourceKeySet.stream()	
		.forEach(c	->	sourceCount	
				.add(streamReturningMethodMap.get(c).size()));	

© Copyright Azul Systems 2016

Counting Methods That Return Streams

21

Functional Way

sourceKeySet.stream()	
		.mapToInt(c	->	streamReturningMethodMap.get(c).size())	
		.sum();	

© Copyright Azul Systems 2016

Printing And Counting Functional Interfaces

22

Still Thinking Imperatively

LongAdder	newMethodCount	=	new	LongAdder();	
	
functionalParameterMethodMap.get(c).stream()	
		.forEach(m	->	{	
				output.println(m);	
	
				if	(isNewMethod(c,	m))		
						newMethodCount.increment();	
		});	
	
		return	newMethodCount.intValue();	

© Copyright Azul Systems 2016

Printing And Counting Functional Interfaces

23

More Functional, But Not Pure Functional

int	count	=	functionalParameterMethodMap.get(c).stream()	
		.mapToInt(m	->	{	
				int	newMethod	=	0;	
				output.println(m);	
	
				if	(isNewMethod(c,	m))		
						newMethod	=	1;	
	
				return	newMethod	
		})	
		.sum();	

There is still state
being modified in the
Lambda

© Copyright Azul Systems 2016

Printing And Counting Functional Interfaces

24

Even More Functional, But Still Not Pure Functional

int	count	=	functionalParameterMethodMap.get(nameOfClass)	
		.stream()	
		.peek(method	->	output.println(method))	
		.mapToInt(m	->	isNewMethod(nameOfClass,	m)	?	1	:	0)		
		.sum();	

Strictly speaking printing is
a side effect, which is not
purely functional

© Copyright Azul Systems 2016

The Art Of Reduction
(Or The Need to Think Differently)

© Copyright Azul Systems 2016

A Simple Problem
§  Find the length of the longest line in a file
§  Hint: BufferedReader has a new method, lines(), that

returns a Stream

26	

BufferedReader	reader	=	...	
	
reader.lines()	
		.mapToInt(String::length)	
		.max()	
		.getAsInt();	

© Copyright Azul Systems 2016

Another Simple Problem
§  Find the length of the longest line in a file

27	

© Copyright Azul Systems 2016

Naïve Stream Solution

§  That works, so job done, right?
§  Not really. Big files will take a long time and a lot of

resources
§  Must be a better approach

28	

String	longest	=	reader.lines().	
		sort((x,	y)	->	y.length()	-	x.length()).	
		findFirst().	
		get();	

© Copyright Azul Systems 2016

External Iteration Solution

§  Simple, but inherently serial
§  Not thread safe due to mutable state

29	

String	longest	=	"";	
	
while	((String	s	=	reader.readLine())	!=	null)	
		if	(s.length()	>	longest.length())	
				longest	=	s;	

© Copyright Azul Systems 2016

Functional Approach: Recursion

30	

String	findLongestString(String	longest,	List<String>	l,	int	i)	{	
		if	(l.get(i).length()	>	longest.length())	
				longest	=	l.get(i);	
				
		if	(i	<	l.length()	-	1)	
				longest	=	findLongestString(longest,	l,	i	+	1);	
				
		if	(longest.length()	>	l.get(i).length())	
				return	longest;	
		return	l.get(i);	
}	

© Copyright Azul Systems 2016

Recursion: Solving The Problem

§  No explicit loop, no mutable state, we’re all good now, right?
§  Unfortunately not - larger data sets will generate an OOM

exception

31	

List<String>	lines	=	new	ArrayList<>();	
	
while	((String	s	=	reader.readLine())	!=	null)	
		lines.add(s);	
	
String	longest	=	findLongestString("",	lines,	0);	

© Copyright Azul Systems 2016

A Better Stream Solution
§  Stream API uses the well known filter-map-reduce pattern
§  For this problem we do not need to filter or map, just

reduce

Optional<T>	reduce(BinaryOperator<T>	accumulator)	
	

§  BinaryOperator is a subclass of BiFunction	
– R	apply(T	t,	U	u)

§  For BinaryOperator all types are the same
– T	apply(T	x,	T	y)	

	

32	

© Copyright Azul Systems 2016

A Better Stream Solution
§  The key is to find the right accumulator

– The accumulator takes a partial result and the next
element, and returns a new partial result

– In essence it does the same as our recursive solution
– But without all the stack frames or List overhead

33	

© Copyright Azul Systems 2016

A Better Stream Solution
§  Use the recursive approach as an accululator for a

reduction

34	

String	longestLine	=	reader.lines()	
		.reduce((x,	y)	->	{	
				if	(x.length()	>	y.length())	
						return	x;	
				return	y;	
		})	
		.get();

© Copyright Azul Systems 2016

A Better Stream Solution
§  Use the recursive approach as an accululator for a

reduction

35	

String	longestLine	=	reader.lines()	
		.reduce((x,	y)	->	{	
				if	(x.length()	>	y.length())	
						return	x;	
				return	y;	
		})	
		.get();

x in effect maintains state
for us, by providing the
partial result, which is the
longest string found so far

© Copyright Azul Systems 2016

The Simplest Stream Solution
§  Use a specialised form of max()	
§  One that takes a Comparator as a parameter

§  comparingInt() is a static method on Comparator
Comparator<T>	comparingInt(
						ToIntFunction<?	extends	T>	keyExtractor)	

36	

reader.lines()	
		.max(comparingInt(String::length))	
		.get();	

© Copyright Azul Systems 2016

Lambdas And Streams
And JDK 9

© Copyright Azul Systems 2016

Additional APIs
§  Optional now has a stream() method

– Returns a stream of one element or an empty stream
§  Collectors.flatMapping()	

– Returns a Collector that converts a stream from one
type to another by applying a flat mapping function

38

© Copyright Azul Systems 2016

Additional APIs
§  Matcher stream support

– Stream<MatchResult>	results()	
§  Scanner stream support

– Stream<MatchResult>	findAll(String	pattern)	
– Stream<MatchResult>	findAll(Pattern	pattern)	
– Stream<String>	tokens()		

39

© Copyright Azul Systems 2016

Additional Stream Sources
§  java.net.NetworkInterface	

– Stream<InetAddress>	inetAddresses()	
– Stream<NetworkInterface>	subInterfaces()		
– Stream<NetworkInterface>	networkInterfaces()	

§ static		
§  java.security.PermissionCollection	

– Stream<Permission>	elementsAsStream()		

40

© Copyright Azul Systems 2016

Parallel Support For Files.lines()
§  Memory map file for UTF-8, ISO 8859-1, US-ASCII

– Character sets where line feeds easily identifiable
§  Efficient splitting of mapped memory region
§  Divides approximately in half

– To nearest line feed

41

© Copyright Azul Systems 2016

Parallel Lines Performance

42

© Copyright Azul Systems 2016

Stream takeWhile
§  Stream<T>	takeWhile(Predicate<?	super	T>	p)	
§  Select elements from stream until Predicate matches
§  Unordered stream needs consideration

thermalReader.lines()	
		.mapToInt(i	->	Integer.parseInt(i))	
		.takeWhile(i	->	i	<	56)	
		.forEach(System.out::println);	

© Copyright Azul Systems 2016

Stream dropWhile
§  Stream<T>	dropWhile(Predicate<?	super	T>	p)	
§  Ignore elements from stream until Predicate matches
§  Unordered stream still needs consideration

thermalReader.lines()	
		.mapToInt(i	->	Integer.parseInt(i))	
		.dropWhile(i	->	i	<	56)	
		.forEach(System.out::println);	

© Copyright Azul Systems 2016

Conclusions

© Copyright Azul Systems 2016

Conclusions
§  Lambdas provide a simple way to parameterise behaviour
§  The Stream API provides a functional style of programming
§  Very powerful combination
§  Does require developers to think differently

– Avoid loops, even non-obvious ones!
– Reductions

§  More to come in JDK 9 (and 10)

§  Join the Zulu.org community
– www.zulu.org

46	

© Copyright Azul Systems 2016

© Copyright Azul Systems 2015

@speakjava azul.com

Q & A

Simon Ritter
Deputy CTO, Azul Systems

47

