
Move Deliberately
And Don’t Break Anything

Brian Goetz (@briangoetz)
Java Language Architect

Oracle Corp

Creative destruction (schöpferische Zerstörung):
the incessant product and process innovation
mechanism by which new production units
replace outdated ones.
 (Joseph Schumpeter, 1942)

Programming is an economic activity

Inputs
• Programmer time
• Pizza

Outputs
• Working code

(hopefully)
• Technical debt

Programming is an economic activity

In a profession where we carry out decade-spanning
holy wars over tab widths and capitalization, it’s no
surprise that people get attached to their
development and release habits.
But if shipping so much software has taught me one
thing, it’s to be an agnostic. Different
methodologies optimize for different goals, and all
of them have downsides. If you maximize for
schedule predictability, you’ll lose on engineer
productivity …

Programming is an economic activity

My fellow engineers, please stop asking “Is this
process good or bad?” and start asking “Is it
well-suited to my situation?”

Pragmatic maxim: Consider what effects, that
might conceivably have practical bearings, we
conceive the object of our conception to have.
Then, our conception of these effects is the
whole of our conception of the object.

 (C. S. Peirce, 1878)

Proto-pragmatic maxim: There is no good, there
is only good for.

 Master Yoda
 (OK, he didn’t really say this)

Engineering down-stack

What people think I do (academic version)

Meetings

Community

Stealing
features from

Haskell
Hacking the

compiler

Type Theory

What people think I do (naïve version)
Meetings in
Secret Back

Rooms

Being a jerk on
mailing lists

Various
pontificating

Patenting
obvious stuff

Stealing
features from

C#
Type system

esoterica

Syntax

What I think I do

Internal
responsibilities

Community

Keeping
features out

Syntax
Adding

features WWJD Prototyping

Regretting
serialization

Interaction
analysis

Compatibility

Compatibility

Binary
Compatibility

Source
Compatibility

Behavioral
Compatibility

Performance
Model

Compatibility

Serialization
Compatibility

Migration
Compatibility

Representational
Compatibility

Security
Compatibility

Forward
Compatibility

Seeing The Big Picture

Suit Up

Embrace and Extend

interface I {
 void m();
}

class C {
 void m() { … }
}

class D extends C implements I { }

interface I {
 default void m() { … }
}

class C {
 void m() { … }
}

class D extends C implements I { }

Embrace and Extend

Default method conflict resolution rules
• Rule 1 – prefer a method from a superclass over

a superinterface
• Rule 2 – if I extends J, prefer a method from I

over J
• Rule 3 – No rule 3!

It Takes as Much Time As It Takes

Don’t Punt On The Hard Cases

Beware Foolish Consistency

“A foolish consistency is the hobgoblin of little
minds, adored by little statesmen and
philosophers and divines.”
 (Ralph Waldo Emerson, 1841)

A Look Ahead

Hardware Evolution

Data Layout
final class Point {
 final int x;
 final int y;
}

header

header

x

y

header

x

y

header

x

y

header

x

y

header

x

y

Layout of these in memory is
effectively random after GC!

header

x

y

x

y

x

y

x

y

Point[] pts = header

x

x

x

x

x

int[] xs = header

y

y

y

y

y

int[] ys =

Value Types
final class Point {
 final int x;
 final int y;
}

value class Point {
 int x;
 int y;
}

header

x

y

x

y

x

y

x

y

Point[] pts =

class Rectangle {
 Point lowerLeft;
 Point upperRight;
}

Rectangle

lowerLeft.x

lowerLeft.y

upperRight.x

upperRight.y

Rectangle r =

Values and Generics

array

Integer

9 Integer

27 Integer

81

Integer

3

ArrayList<Integer>
 ints = ArrayList

array

size

array

3

9

27

81

ArrayList<int>
 ints = ArrayList<int>

array

size

Thank
You

Brian Goetz (@briangoetz)
Java Language Architect

Oracle Corp

	Move Deliberately�And Don’t Break Anything
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Programming is an economic activity
	Programming is an economic activity
	Programming is an economic activity
	Slide Number 11
	Slide Number 12
	Engineering down-stack
	What people think I do (academic version)
	What people think I do (naïve version)
	What I think I do
	Compatibility
	Seeing The Big Picture
	Suit Up
	Embrace and Extend
	Embrace and Extend
	It Takes as Much Time As It Takes
	Don’t Punt On The Hard Cases
	Beware Foolish Consistency
	A Look Ahead
	Hardware Evolution
	Data Layout
	Value Types
	Values and Generics
	Thank�You

