

What's

not
new

in

modular
Java!

Milen Dyankov
@milendyankov

Featuring
JDK 9 Early Access
with Project Jigsaw

Think of

not new
as in

not new
concept
and not as in

not new
car

JSR 277
JSR 294

JSR 376
JEP 200
JEP 201
JEP 220
JEP 260
JEP 261

...

2005

2014

Java
application

Java
application

JRE/JDK

Libraries

O
S

G
i

There is nothing
we can do about it!

O
S

G
i

c l a s s l o a d e r s

There is nothing
we can do about it!

O
S

G
i

c l a s s l o a d e r s

There is nothing
we can do about it!

Dynamic multi-layer
modular runtime!

O
S

G
i

c l a s s l o a d e r s

There is nothing
we can do about it!

Dynamic multi-layer
modular runtime!

It's so easy,
everyone

should
release
bundles

(modules)! O
S

G
i

“Many
people claim

OSGi is hard without
acknowledging that modularizing

applications is the hard part.
 . . .

 JSR 376 will demonstrate that OSGi
was just the messenger and actually not the cause.”

Peter Kriens

J
S

R
 3

7
6

J
S

R
 3

7
6

Modules are
first class citizens!

J
S

R
 3

7
6

Modules are
first class citizens!

 Nothing to do about it,
 must use modules!

J
S

R
 3

7
6

Modules are
first class citizens!

 Nothing to do about it,
 must use modules!

It's so easy,
everyone

must
release
modules!

not new

except now
you kinda
have to

new
Modular
Java SE
Platform!

Modular
Java SE

Applications!

“A lot of people

will discover that

their babies are not as

modular as they thought”
Peter Kriens

product
intermediate

intermediate

material

Application

Artifact

Artifact
Artifact

Artifact

Artifact Artifact

Export

Export

Export

Export

Export

Export

Export

Export

Export

Export

Export

Artifact

OSGi JSR 376what is
module

?

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

...

MANIFEST.MF

module com.mycompany.mymodule {

...

}

module-info.java

Artifact

OSGi JSR 376modules
can be

producers

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

Export-Package: \
com.mycompany.mypackage

...

MANIFEST.MF

module com.mycompany.mymodule {

 exports com.mycompany.mypackage;

...

}

module-info.java

Export

OSGi JSR 376modules
can also be
consumers

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

Require-Bundle: \
other.module

Import-Package: \
com.some.package

...

MANIFEST.MF

module com.mycompany.mymodule {

 requires other.module;

...

}

module-info.java

Artifact

Export

Artifact

OSGi JSR 376modules
can also be
consumers

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

Require-Bundle: \
com.foo

Import-Package: \
com.intermediate.powerplug

...

MANIFEST.MF

module com.mycompany.mymodule {

 requires com.foo;

...

}

module-info.java

Foo

Me

I need power plug!

I need Foo because
I know it offers
power plugs and
I know only Foo

offers power plugs!

OSGi JSR 376modules
can also be
resellers

Manifest-Version: 1.0
Bundle-SymbolicName: \

com.mycompany.mymodule

Export-Package: \
com.mycompany.mypackage;\

uses:="com.some.package”

...

MANIFEST.MF

module com.mycompany.mymodule {

 exports com.mycompany.mypackage;

 requires public other.module;

 ...

}

module-info.java

Artifact

Artifact

Export

ArtifactExport

OSGi JSR 376modules
and

services
@Component
public class MyServiceImpl
 implements MyService {

 ...

}

ServiceImpl.java

module com.mycompany.mymodule {

 provides com.some.Service
 with com.some.ServiceImpl;

...

}

module-info.java

Artifact

Artifact

service

module com.mycompany.myapp {

 usess com.some.Service;

...

}

module-info.java

module com.mycompany.mymodule {

 provides com.some.Service
 with com.some.ServiceImpl;

...

}

ServiceConsumer.java

public class MyServiceConsumer {

 @Reference
 public MyService bind(
 MyService myservice) {
 ...
 }
...
}

Dynamism

Versions/Layers

Java EE

Build tools

Declaration first vs code first approach

JSR 376 and OSGi interoperability

“... once modularization
becomes part of the
Java core tool set,

developers will begin to
embrace it en-masse,

and as they do so, they
will seek more robust

and more mature
solutions. Enter OSGi!”

Victor Grazi

www.liferay.com/devcon

Modular Java Track

@

http://www.liferay.com/devcon

milen.dyankov@liferay.com
@MilenDyankov

http://www.liferay.com
@Liferay

mailto:milen.dyankov@liferay.com

