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Schibsted? 
Collecting events? 

Why?



Schibsted
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30 countries
200 million users/month
20 billion pageviews/month



Three parts
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Tinius
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Restructuring
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User data is central
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Event collection
• Event collection pipeline exists to enable strategy 

• Collect information on user behaviour 
• across all web properties 

• Use to 
• target ads 
• improve products 
• make recommendations 
• understand users
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Events/day
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Xmas Eve New year



Helicopter crash
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The pipeline
Rælingen, 1960. Photo by Per Solrud



Architecture
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Collector Kinesis

Piper
S3

Kinesis

Cassandra

Storage + 
batch S3



Complications
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Collector

CIS
Steps: 

1. Start batching events 
2. Get ID from CIS 
3. If opt out, stop 
4. Send events



Storage
• The second step writes events into S3 as JSON 

• S3: AWS storage system 
• kind of like a file system over HTTP 

• You can write to s3://bucket/path/to/file 
• files are blobs 
• have to write entire file when writing, no random access 
• eventually consistent 

• Very strong guarantee on durability 
• but substantial latency
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Why not S3 directly?
• Writing to S3 takes ~2-4 seconds 

• a long time to wait before the events are safe 

• Reading takes a while, too 

• Not good for “realtime” usages 
• of which we have a few
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Storage
• Each event ~2200 bytes of JSON = ~1760 GB/day 

• this turns out to be very slow to load in Spark 

• Switched over to using batch jobs coalescing 
JSON into Parquet 
• some difficulties with nested -> flat structure 
• unpredictable schema variations from site to site 
• huge performance gain

16



Consumers
• Ad targeting 

• Personalization 

• User modelling 

• Business intelligence 

• Individual sites 

• Schibsted internal CMS 

• …
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Batch

Anonymized

Identifiable



Working in the cloud



Amazon web services
• For each application, build a Linux image (AMI) 

• Set up an auto-scaling group 
• define min and max number of nodes 
• define rules to scale up/down based on metrics (CPU, …) 

• Amazon ELB in front 
• talks to health check endpoint on each node 

• Also provides Kinesis, S3, …
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Scaling policies
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Metrics
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Monitors
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Probe
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Data collector



Overview
• Vulnerable 

• data not yet persisted 
• can’t expect clients to resend if collector fails 
• traffic comes with sudden spikes 

• A very thin layer in front of Kinesis 
• persist the data as quickly as possible 
• we can work on the data later, once it’s stored 

• Use Kinesis because it has very low write latency 
• generally <100 ms

26



Kinesis
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Stream

Endpoint



Basics
• Scala application 

• Based on Netty/Finagle/Finatra 

• Framework scales very well 
• if app is overloaded, the only thing that happens is number 

of open connections piles up 
• eventually hits max open files, causing failures
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First design
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Kinesis

parse JSON

validate

insert fields

Kinesis PUT wait

send response

Time spent 
here!



First version
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Kinesis

parse JSON

validate

insert fields queue JSON

send response

get queue

Kinesis PUT wait



Error handling?
• I had no experience with AWS - didn’t know what to expect 

• could Kinesis go down for 1 minute? 1 hour? 1 day? 
• anecdotal reports of single nodes being unable to contact Kinesis 

while others working fine 

• Considered 
• batching on disk with fallback to S3 
• feeding batched events back to collector 
• … 

• In the end decided to wait for more experience
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Ooops!
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Queue grows
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Kaboom
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GC eats the CPU
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Failure to recover

36





Redesign
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extend JSON serialize JSON

temp storage

fixed-size queue fixed-size queue

request thread

Kinesis 
Ireland

Kinesis 
Frankfurt



Latency spike!
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No increase in CPU
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Frankfurt saves the day
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Network outage

42



Network out is slow
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Events spill to disk
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Application survives
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Disk usage
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More rework
• It turned out that it was still possible for the two 

Kinesises to be too slow 
• more records would come in than we could write out 
• events spilling to disk, high latency 
• set off alarms and violate SLAs 
• solution: four writers, to two streams 

• Networking issues causing absurd write latency 
• writes taking several minutes 
• solution: set a timeout of 15 seconds
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Nov 11 non-incident
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Design flaws
• Collector shouldn’t parse the JSON 

• this is a waste of CPU resources 

• Collector should just pack JSON plus extra fields into 
some efficient serialization (Avro? Thrift? …) 
• then write to Kinesis 
• perhaps also gzip the data 

• Let later stages deal with the tidying up 
• not done yet, because requires changes to several components 
• quite possibly also a custom Spark reader
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Kinesis -> S3



Storage

• Very simple application 
• data in Kinesis lives 24 hours 
• therefore want something simple and fool-proof 

• Stores all the data to S3 
• does nothing else 
• uses Kinesis Client Library (KCL) to read from Kinesis

51

Kinesis Storage S3



Kinesis read limits
• KCL can give us max 10,000 records per read 

• but it never does 
• even if the stream contains many more records 

• Experiment 
• write lots of 80-byte records into a test stream 
• then add lots of 2000-byte records 
• read the stream with KCL, observe results
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Result
Wrote 10000 records (815960 bytes) in 2409 ms, 4 records/ms 
Wrote 10000 records (816980 bytes) in 790 ms, 12 records/ms 
Wrote 10000 records (816270 bytes) in 750 ms, 13 records/ms 
Wrote 10000 records (817690 bytes) in 742 ms, 13 records/ms 
Wrote 10000 records (817990 bytes) in 929 ms, 10 records/ms 
Wrote 10000 records (817990 bytes) in 798 ms, 12 records/ms 
Wrote 10000 records (819000 bytes) in 720 ms, 13 records/ms 
Wrote 10000 records (816980 bytes) in 724 ms, 13 records/ms 
Wrote 10000 records (817990 bytes) in 833 ms, 12 records/ms 
Wrote 10000 records (818080 bytes) in 726 ms, 13 records/ms 
Wrote 10000 records (818000 bytes) in 730 ms, 13 records/ms 
Wrote 10000 records (818180 bytes) in 721 ms, 13 records/ms 
Wrote 9535 records (6176176 bytes) in 2432 ms, 3 records/ms 
Wrote 3309 records (6934426 bytes) in 1991 ms, 1 records/ms 
Wrote 3309 records (6933172 bytes) in 1578 ms, 2 records/ms 
Wrote 3309 records (6934878 bytes) in 1667 ms, 1 records/ms 
Wrote 3310 records (6934916 bytes) in 1599 ms, 2 records/ms 
Wrote 3309 records (6934319 bytes) in 1614 ms, 2 records/ms 
Wrote 3309 records (6933975 bytes) in 2054 ms, 1 records/ms
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Bigger records =  
fewer per batch



Falling behind
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The relevant knob
• KCL has a setting for sleep between reads 

• Used to have this at 10,000 ms 
• this in order to not get so many small JSON files 
• these are slow to read back out of S3 

• As a result of this investigation, reduced to 5000ms 
• much later, reduced further to 3000ms 

• Another knob is the number of shards
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Results
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New setting deployed



Analytics platform



• Analytics jobs are written in Apache Spark 
• much easier to write code for than Hadoop 
• also more efficient 

• Used to be deployed on separate clusters 
• this was very expensive 
• now switching over to a shared cluster 
• this is somewhat painful, as we’re still learning
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Spark
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Dependencies
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Storage 
output

Anon

Ident

anonymize

Site 1
Site 2
Site 3

demux



• A job scheduler developed by Spotify 
• use Python code to declare parameters, dependencies, 

and outputs 
• Luigi will schedule jobs accordingly 
• locking to ensure only one of each job running at a time 

• Python code also for actually starting the job 
• many ready-made wrappers for known job types
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A Luigi 
task



Luigi issues
• No cron-like functionality 

• has to be handled by other means (like cron) 

• Single master only 
• uses file locking on disk to prevent simultaneous execution 

of tasks 

• No resource planning 
• it has no idea what resources are available 
• cannot queue jobs waiting for resources
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knox
• Schibsted internal tool for working with data 

• knox job deploy: deploy job in cluster 

• knox job status: what’s the status of my job? 

• knox job kill: stop running job 

• knox job disable: don’t run this job again 

• knox job list: what jobs exist?
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Cluster architecture
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Chronos

Mesos cluster

Job #1 Job #2 Job #3

Luigi 
server

Spark 
master

Spark 
node

Spark 
node

Spark 
node

Spark 
node

Craneknox





Synchronous events



New requirements
• Receive backend events from other applications 

• new ad, ad updated, … 

• Can’t lose events 
• want to be able to tie business logic to them 

• Must confirm event written to Kinesis with 200 OK 
• these clients can resend
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Remember this?

69

Kinesis

parse JSON

validate

insert fields

Kinesis PUT wait

send response



Throttling
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try { 
  openRequests++ 
  if (openRequests > MAX_SIMULTANEOUS_REQUESTS) 
    response.status(509) 
  else if (kinesis.sendToKinesis(request.content)) 
    response.status(200) 
  else 
    response.status(500) 
} finally { 
  openRequests-- 
}

openRequests never bigger than 2…



What’s going on?
• Worker-based web servers 

• allocate a fixed number of worker threads/processes 
• each worker picks one request, finishes processing that, then 

picks the next request 
• have enough that while some may block on I/O there are 

always some threads making progress 

• Event-based web servers 
• small number of worker threads 
• use polling interfaces to multiplex between connections 
• less context switching => more efficient
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Finatra
• Event-based framework 

• response.status(200) doesn’t return a Response 
• it returns Future[Response] that’s already populated 

• This means, if we’re blocked we can return a 
Future[Response] that completes when we’re done 
• allows Finatra to continue on another request that’s not 

blocked
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Canonical solution
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Kinesis

process JSON

hand off task

get Future

Finatra ThreadPool

pick task

send put

populate 
Future



Weaknesses
• Every event is a separate request to Kinesis 

• very inefficient  

• Now suddenly we have a lot of threads again 
• back to the context-switching we were supposed to avoid 

• Hard, low limit on the number of simultaneous 
requests 
• limit = number of threads
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What’s a Future?
public interface Future<V> { 

  public boolean isDone() 

    // true iff the value is there, false otherwise 

  

  public V get() 

    // loop until the value is there, then return it 

    // if computing the value failed, throw the exception  

}
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Redesign
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extend JSON serialize JSON

temp storage

fixed-size queue fixed-size queue

request thread

SyncEndpt Add event with callback 
Callback inserts Response into Future



Inside KinesisWriter
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Event Future
JSON
JSON
JSON Callback
JSON
JSON
JSON
JSON
JSON Callback
JSON

…



Actual code
val promise = new Promise[Response] 

kinesis.add(request.contentString.getBytes("utf-8"), 

  // the writer will call this function with the outcome, which 

  // causes Finatra to send the response to the client 

  (success : Boolean) => if (success) 

    promise.setValue(response.status(200)) 

  else 

    promise.setValue(response.status(509)) 

) 

promise
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Benefits
• Number of threads is kept minimal 

• not all that context-switching 

• Hard limit on requests is much higher (5000) 

• No extra moving parts 

• Synchronous requests sent together with other 
requests 
• much more efficient 
• much simpler
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Winding up



Conclusion
• Schibsted Tech is still only just getting started 

• the basics now in place 
• starting to generate money 
• a lot more work to do 

• Use of AWS saves us from a lot of hassle 
• Working at this scale 

• causes different challenges from what I’m used to 
• a lot more error handling/retries/scaling
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