
800,000,000 events/day
Lars Marius Garshol, lars.marius.garshol@schibsted.com
http://twitter.com/larsga

2017–02–08, JFokus 2017

Schibsted?
Collecting events?

Why?

Schibsted

3

30 countries
200 million users/month
20 billion pageviews/month

Three parts

4

Tinius

5

Restructuring

6

User data is central

7

Event collection
• Event collection pipeline exists to enable strategy

• Collect information on user behaviour
• across all web properties

• Use to
• target ads
• improve products
• make recommendations
• understand users

8

Events/day

9

Xmas Eve New year

Helicopter crash

10

The pipeline
Rælingen, 1960. Photo by Per Solrud

Architecture

12

Collector Kinesis

Piper
S3

Kinesis

Cassandra

Storage +
batch S3

Complications

13

Collector

CIS
Steps:

1. Start batching events
2. Get ID from CIS
3. If opt out, stop
4. Send events

Storage
• The second step writes events into S3 as JSON

• S3: AWS storage system
• kind of like a file system over HTTP

• You can write to s3://bucket/path/to/file
• files are blobs
• have to write entire file when writing, no random access
• eventually consistent

• Very strong guarantee on durability
• but substantial latency

14

Why not S3 directly?
• Writing to S3 takes ~2-4 seconds

• a long time to wait before the events are safe

• Reading takes a while, too

• Not good for “realtime” usages
• of which we have a few

15

Storage
• Each event ~2200 bytes of JSON = ~1760 GB/day

• this turns out to be very slow to load in Spark

• Switched over to using batch jobs coalescing
JSON into Parquet
• some difficulties with nested -> flat structure
• unpredictable schema variations from site to site
• huge performance gain

16

Consumers
• Ad targeting

• Personalization

• User modelling

• Business intelligence

• Individual sites

• Schibsted internal CMS

• …

17

Batch

Anonymized

Identifiable

Working in the cloud

Amazon web services
• For each application, build a Linux image (AMI)

• Set up an auto-scaling group
• define min and max number of nodes
• define rules to scale up/down based on metrics (CPU, …)

• Amazon ELB in front
• talks to health check endpoint on each node

• Also provides Kinesis, S3, …

19

Scaling policies

21

Metrics

22

Monitors

23

Probe

24

Data collector

Overview
• Vulnerable

• data not yet persisted
• can’t expect clients to resend if collector fails
• traffic comes with sudden spikes

• A very thin layer in front of Kinesis
• persist the data as quickly as possible
• we can work on the data later, once it’s stored

• Use Kinesis because it has very low write latency
• generally <100 ms

26

Kinesis

27

Stream

Endpoint

Basics
• Scala application

• Based on Netty/Finagle/Finatra

• Framework scales very well
• if app is overloaded, the only thing that happens is number

of open connections piles up
• eventually hits max open files, causing failures

28

First design

29

Kinesis

parse JSON

validate

insert fields

Kinesis PUT wait

send response

Time spent
here!

First version

30

Kinesis

parse JSON

validate

insert fields queue JSON

send response

get queue

Kinesis PUT wait

Error handling?
• I had no experience with AWS - didn’t know what to expect

• could Kinesis go down for 1 minute? 1 hour? 1 day?
• anecdotal reports of single nodes being unable to contact Kinesis

while others working fine

• Considered
• batching on disk with fallback to S3
• feeding batched events back to collector
• …

• In the end decided to wait for more experience

31

Ooops!

32

Queue grows

33

Kaboom

34

GC eats the CPU

35

Failure to recover

36

Redesign

38

extend JSON serialize JSON

temp storage

fixed-size queue fixed-size queue

request thread

Kinesis
Ireland

Kinesis
Frankfurt

Latency spike!

39

No increase in CPU

40

Frankfurt saves the day

41

Network outage

42

Network out is slow

43

Events spill to disk

44

Application survives

45

Disk usage

46

More rework
• It turned out that it was still possible for the two

Kinesises to be too slow
• more records would come in than we could write out
• events spilling to disk, high latency
• set off alarms and violate SLAs
• solution: four writers, to two streams

• Networking issues causing absurd write latency
• writes taking several minutes
• solution: set a timeout of 15 seconds

47

Nov 11 non-incident

48

Design flaws
• Collector shouldn’t parse the JSON

• this is a waste of CPU resources

• Collector should just pack JSON plus extra fields into
some efficient serialization (Avro? Thrift? …)
• then write to Kinesis
• perhaps also gzip the data

• Let later stages deal with the tidying up
• not done yet, because requires changes to several components
• quite possibly also a custom Spark reader

49

Kinesis -> S3

Storage

• Very simple application
• data in Kinesis lives 24 hours
• therefore want something simple and fool-proof

• Stores all the data to S3
• does nothing else
• uses Kinesis Client Library (KCL) to read from Kinesis

51

Kinesis Storage S3

Kinesis read limits
• KCL can give us max 10,000 records per read

• but it never does
• even if the stream contains many more records

• Experiment
• write lots of 80-byte records into a test stream
• then add lots of 2000-byte records
• read the stream with KCL, observe results

52

Result
Wrote 10000 records (815960 bytes) in 2409 ms, 4 records/ms
Wrote 10000 records (816980 bytes) in 790 ms, 12 records/ms
Wrote 10000 records (816270 bytes) in 750 ms, 13 records/ms
Wrote 10000 records (817690 bytes) in 742 ms, 13 records/ms
Wrote 10000 records (817990 bytes) in 929 ms, 10 records/ms
Wrote 10000 records (817990 bytes) in 798 ms, 12 records/ms
Wrote 10000 records (819000 bytes) in 720 ms, 13 records/ms
Wrote 10000 records (816980 bytes) in 724 ms, 13 records/ms
Wrote 10000 records (817990 bytes) in 833 ms, 12 records/ms
Wrote 10000 records (818080 bytes) in 726 ms, 13 records/ms
Wrote 10000 records (818000 bytes) in 730 ms, 13 records/ms
Wrote 10000 records (818180 bytes) in 721 ms, 13 records/ms
Wrote 9535 records (6176176 bytes) in 2432 ms, 3 records/ms
Wrote 3309 records (6934426 bytes) in 1991 ms, 1 records/ms
Wrote 3309 records (6933172 bytes) in 1578 ms, 2 records/ms
Wrote 3309 records (6934878 bytes) in 1667 ms, 1 records/ms
Wrote 3310 records (6934916 bytes) in 1599 ms, 2 records/ms
Wrote 3309 records (6934319 bytes) in 1614 ms, 2 records/ms
Wrote 3309 records (6933975 bytes) in 2054 ms, 1 records/ms

53

Bigger records =
fewer per batch

Falling behind

54

The relevant knob
• KCL has a setting for sleep between reads

• Used to have this at 10,000 ms
• this in order to not get so many small JSON files
• these are slow to read back out of S3

• As a result of this investigation, reduced to 5000ms
• much later, reduced further to 3000ms

• Another knob is the number of shards

55

Results

56

New setting deployed

Analytics platform

• Analytics jobs are written in Apache Spark
• much easier to write code for than Hadoop
• also more efficient

• Used to be deployed on separate clusters
• this was very expensive
• now switching over to a shared cluster
• this is somewhat painful, as we’re still learning

58

Spark

59

Dependencies

60

Storage
output

Anon

Ident

anonymize

Site 1
Site 2
Site 3

demux

• A job scheduler developed by Spotify
• use Python code to declare parameters, dependencies,

and outputs
• Luigi will schedule jobs accordingly
• locking to ensure only one of each job running at a time

• Python code also for actually starting the job
• many ready-made wrappers for known job types

61

A Luigi
task

Luigi issues
• No cron-like functionality

• has to be handled by other means (like cron)

• Single master only
• uses file locking on disk to prevent simultaneous execution

of tasks

• No resource planning
• it has no idea what resources are available
• cannot queue jobs waiting for resources

63

knox
• Schibsted internal tool for working with data

• knox job deploy: deploy job in cluster

• knox job status: what’s the status of my job?

• knox job kill: stop running job

• knox job disable: don’t run this job again

• knox job list: what jobs exist?
64

Cluster architecture

65

Chronos

Mesos cluster

Job #1 Job #2 Job #3

Luigi
server

Spark
master

Spark
node

Spark
node

Spark
node

Spark
node

Craneknox

Synchronous events

New requirements
• Receive backend events from other applications

• new ad, ad updated, …

• Can’t lose events
• want to be able to tie business logic to them

• Must confirm event written to Kinesis with 200 OK
• these clients can resend

68

Remember this?

69

Kinesis

parse JSON

validate

insert fields

Kinesis PUT wait

send response

Throttling

70

try {
 openRequests++
 if (openRequests > MAX_SIMULTANEOUS_REQUESTS)
 response.status(509)
 else if (kinesis.sendToKinesis(request.content))
 response.status(200)
 else
 response.status(500)
} finally {
 openRequests--
}

openRequests never bigger than 2…

What’s going on?
• Worker-based web servers

• allocate a fixed number of worker threads/processes
• each worker picks one request, finishes processing that, then

picks the next request
• have enough that while some may block on I/O there are

always some threads making progress

• Event-based web servers
• small number of worker threads
• use polling interfaces to multiplex between connections
• less context switching => more efficient

71

Finatra
• Event-based framework

• response.status(200) doesn’t return a Response
• it returns Future[Response] that’s already populated

• This means, if we’re blocked we can return a
Future[Response] that completes when we’re done
• allows Finatra to continue on another request that’s not

blocked

72

Canonical solution

73

Kinesis

process JSON

hand off task

get Future

Finatra ThreadPool

pick task

send put

populate
Future

Weaknesses
• Every event is a separate request to Kinesis

• very inefficient

• Now suddenly we have a lot of threads again
• back to the context-switching we were supposed to avoid

• Hard, low limit on the number of simultaneous
requests
• limit = number of threads

74

What’s a Future?
public interface Future<V> {

 public boolean isDone()

 // true iff the value is there, false otherwise

 public V get()

 // loop until the value is there, then return it

 // if computing the value failed, throw the exception

}
75

Redesign

76

extend JSON serialize JSON

temp storage

fixed-size queue fixed-size queue

request thread

SyncEndpt Add event with callback
Callback inserts Response into Future

Inside KinesisWriter

77

Event Future
JSON
JSON
JSON Callback
JSON
JSON
JSON
JSON
JSON Callback
JSON

…

Actual code
val promise = new Promise[Response]

kinesis.add(request.contentString.getBytes("utf-8"),

 // the writer will call this function with the outcome, which

 // causes Finatra to send the response to the client

 (success : Boolean) => if (success)

 promise.setValue(response.status(200))

 else

 promise.setValue(response.status(509))

)

promise

78

Benefits
• Number of threads is kept minimal

• not all that context-switching

• Hard limit on requests is much higher (5000)

• No extra moving parts

• Synchronous requests sent together with other
requests
• much more efficient
• much simpler

79

Winding up

Conclusion
• Schibsted Tech is still only just getting started

• the basics now in place
• starting to generate money
• a lot more work to do

• Use of AWS saves us from a lot of hassle
• Working at this scale

• causes different challenges from what I’m used to
• a lot more error handling/retries/scaling

81

