Akka Distributed Data

Ryan Knight
Principal Architect
@knight_cloud

Agenda
Challenges of Distributed Systems

Conflict Free Replicated Data Types -
CRDTs

Akka Clustering

Akka Distributed Data

Challenges of Distributed
Systems

Challenges of Distributed Computing

e Replication is Slow

e Servers Fail

e The network is not reliable
e Latency>o0

e Limited Bandwidth

Fallacies of Traditional Data Models

e Total Global Ordering is not possible
e Datais not a single opaque value

e ACID Transactions are not possible

Global Locks / Distributed
Transactlons

CAP Theorem

Consistency

-

CA cP

Availability Partition
Tolerance

CouchDB
Cassandra
DynamoDB

Riak

Eventual Consistency (EC)

Embracing failure in distributed systems
Reconciling different operation orders
EC with Probabilistic Guarantees

EC with Strong Guarantees

Conflict Free Replicated
Data Types - CRDTs

Avoiding Conflicts

What are CRDTs

Data types that guarantee convergence to the
same value in spite of network delays,

partitions and message reordering

http:/ /book.mixu.net/distsys/eventual.html

Rethinking how we view Data

e Not just a place to dump values

e Abstraction of the data type
e Data Structure that tells how to build the

value

Why CRDTs

Replicate data across the network without
any synchronization mechanism
Avoid distributed locks, two-phase commit,

etc.

Consistency without Consensus

Value of CRDTs

e Sacrifice linearizability (guaranteed
ordering) while remaining correct
e Used to build AP Architectures - Highly

Available and Partition Tolerant

Monotonic Sequence

e Monotonic Sequences - Sequence that
always increases or always decreases

e Monotonic Sequences are eventually
consistent without any need for

coordination protocols

Convergent Operations

e Associative (a+(b*c)=(atb)+c) - grouping doesn't
matter

e Commutative (a+b=b+a) - order of application
doesn't matter

e ldempotent (a+a=a) - duplication does not

matter

Example Operations

Union (Items) Max Values
{a,b,cl 7

/ | \ / \

{a, bl {b,cl {a,c} 5 7

|\ / |/ / | \

{al {b}l Icl 35 7

CRDT Counters

e Grow-only counter - only supports increments
e Positive-negative counter
o Two grow counters, one for increments and

another for decrements

CRDT Registers

e Last Write Wins Register
o Cassandra Columns
e Multi-valued -register

o Objects (values) in Riak

CRDT Sets

e Grow-only set -> merge by union(items) with no
removal

e ORSet (Observer /Remove) - uses version vector and
birth dots.
o Once removed, an element cannot be re-added
o Version vector and the dots are used by the merge

function

CRDT Maps

ORMap
ORMultiMap
LWWMap
PNCounterMap

CRDT Compose

e CRDT Value can contain another CRDT
e ORSet can contain a G-Counter

e ORMap can contain a LWW Register

CRDT Implementations

Riak Data Types are convergent replicated

data types

e https://docs.basho.com/riak/kv/2.2.0/learn/concepts/crdts/

SoundCloud Roshi

o https://github.com/soundcloud/roshi

Akka Distributed Data

https://github.com/soundcloud/roshi
https://github.com/soundcloud/roshi

Akka Clustering

Akka

Actor Based Toolkit

Simple Concurrency & Distribution
Error Handling and Self-Healing
Elastic and Decentralized

Adaptive Load Balancing

What is an Actor

Isolated lightweight processes
Message Based / Event Driven
Run Asynchronously

Processes one message at a time
Sane Concurrency

Isolated Failure Handling

Actor Systems

Actor system is the hierarchy of collaborating
actors

Parent actors delegate work to child actors
Child actors are supervised by Parent Actors

Failure can be propagated back up Actor

Hierarchy

Akka Clustering

Peer-to-peer based cluster membership
Communicates state via gossip protocols
No single point of failure or single point of
bottleneck.

Automatic node failure detector

Gossip Protocol

e Sharing state by gossiping with neighbors
e Each node holds state and picks a random
node to share information with

e Reliable communication is not assumed

Akka Clustering

Cluster Singletons
Cluster Roles

Cluster Events
Cluster-Aware Routers

Cluster Sharding

Akka Cluster State - Monotonic!

join
up
{leader action leave
Kl
joining . 1.":{1‘{&*} > leaving
Py e
unreachable* ¢ ’ {leader action)
e, (fd)
clowm e exiting

; {leader action)
removed

Akka Distributed Data

Akka Distributed Data

Replicated in-memory data store

Share Data between Akka Cluster Nodes
Low latency and high-availability
Key-Value store like API

State Based CRDTs

e Akka Distributed Data only supports state
based CvRDT's

e Require storage of extra data to facilitate

merging

e Entire State of CRDT’'s must be disseminated

Delta State Based CRDTs

e Akka 2.5 Introduced Delta State CRDTS
e Only recently applied mutations to a state

are disseminated instead of the entire state

Data Resolution

Concurrent updates automatically resolved

with monotonic merge function

Fine Grained Control of Consistency Level of

Reads and Writes

Update from any node without coordination

Fine Grained Control of Consistency

WriteLocal, WriteTo(n), WriteMajority, WriteAll
ReadlLocal, ReadFrom, ReadMajority, ReadAll
Majority is N/2 +1

Guaranteed Consistency

o (nodes_written * nodes_read) > N

Data Distribution

e Data Spread two ways depending on
Consistency Level

e Direct replication to meet Consistency
Level of Write

e Gossip dissemination to remaining nodes

Data Types

Implements the ReplicatedData Trait

o Monotonic merge function

Counters: GCounter, PNCounter

Sets: GSet, ORSet

Maps: ORMap, ORMultiMap, LWWMap, PNCounterMap
Registers: LWWRegister, Flag

Replicated Data Type Scala Interface

trait ReplicatedData {
type T <: ReplicatedData
/**
* Monotonic merge function.
*/
def merge(that: T): T
}

Replicated Data Type Java Interface

public class TwoPhaseSet extends AbstractReplicatedData<TwoPhaseSet> {
public final GSet<String> adds;

public final GSet<String> removals;

public TwoPhaseSet mergeData (TwoPhaseSet that) {
return new TwoPhaseSet (this.adds.merge (that.adds),

this.removals.merge (that.removals)) ;

The Replicator Actor

Performs all Replication

Started on all cluster nodes participating in Distributed
Data

The replicator is similar to a key-value store:

o Keys are strings, values are ReplicatedData

Data is replicated directly and via gossiping

The Local Replicator

val replicator = DistributedData (context.system) .replicator

e All Communication is done via the local replicator
e Accessed via the DataReplication extension
e Supported operations are Get, Subscribe, Update and

Delete

Updating

Key typed with the distributed data type

Initial value

Werite consistency -> Once met sends an
UpdateSuccess message back

Optional request context - used to send response to the
sender on UpdateSuccess message

Update function

Update Example

Update<LWWMap<Lineltem>> update = new Update<>(dataKey,
LWWMap.create (), writeMajority,

cart -> updateCart(cart, add.item));

replicator. tell (update, self());

Change
Notifications

e Subscription is done by sending a Subscribe message
to the local replicator

e The actor will then receive changed messages

Change Notifications

case ¢ @ Changed(DataKey) =>
val data = c.get (DataKey)
println ()
println ("Current elements:")

data.entries.foreach (println)

Pruning Algorithm

e When a node is removed from the cluster a pruning

algorithm is used to collapse data

Additional Resources

http://doc.akka.io/docs/akka/snapshot/scala/distributed-data.html

Strong Eventual Consistency and Conflict-free Replicated Data Types talk by Mark Shapiro
o http:/ /research.microsoft.com/apps/video/default.aspx?id-153540&r=1
http:/ /book.mixu.net/ distsys/eventual.html
https:/ /www.infoq.com/ presentations/ crdt-soundcloud?utm_source=infoq&utm_medium-=sli

deshare&utm_campaign=slidesharesf

http://doc.akka.io/docs/akka/snapshot/scala/distributed-data.html
http://doc.akka.io/docs/akka/snapshot/scala/distributed-data.html

Questions?

