
Akka Distributed Data

Ryan Knight
Principal Architect
@knight_cloud

Agenda
● Challenges of Distributed Systems

● Conflict Free Replicated Data Types -

CRDTs

● Akka Clustering

● Akka Distributed Data

Challenges of Distributed
Systems

Challenges of Distributed Computing

● Replication is Slow

● Servers Fail

● The network is not reliable

● Latency > 0

● Limited Bandwidth

Fallacies of Traditional Data Models

● Total Global Ordering is not possible

● Data is not a single opaque value

● ACID Transactions are not possible

Global Locks / Distributed
Transactions

Eventual Consistency (EC)

● Embracing failure in distributed systems

● Reconciling different operation orders

● EC with Probabilistic Guarantees

● EC with Strong Guarantees

Conflict Free Replicated
Data Types - CRDTs

Avoiding Conflicts

What are CRDTs

Data types that guarantee convergence to the

same value in spite of network delays,

partitions and message reordering

http://book.mixu.net/distsys/eventual.html

Rethinking how we view Data

● Not just a place to dump values

● Abstraction of the data type

● Data Structure that tells how to build the

value

Why CRDTs

● Replicate data across the network without

any synchronization mechanism

● Avoid distributed locks, two-phase commit,

etc.

● Consistency without Consensus

Value of CRDTs

● Sacrifice linearizability (guaranteed

ordering) while remaining correct

● Used to build AP Architectures - Highly

Available and Partition Tolerant

Monotonic Sequence

● Monotonic Sequences - Sequence that

always increases or always decreases

● Monotonic Sequences are eventually

consistent without any need for

coordination protocols

Convergent Operations

● Associative (a+(b+c)=(a+b)+c) - grouping doesn't

matter

● Commutative (a+b=b+a) - order of application

doesn't matter

● Idempotent (a+a=a) - duplication does not

matter

Example Operations

 { a, b, c } 7

 / | \ / \

{a, b} {b,c} {a,c} 5 7

 | \ / | / / | \

 {a} {b} {c} 3 5 7

Union (Items) Max Values

CRDT Counters

● Grow-only counter - only supports increments

● Positive-negative counter

○ Two grow counters, one for increments and

another for decrements

CRDT Registers

● Last Write Wins Register

○ Cassandra Columns

● Multi-valued -register

○ Objects (values) in Riak

CRDT Sets

● Grow-only set -> merge by union(items) with no

removal

● ORSet (Observer /Remove) - uses version vector and

birth dots.

○ Once removed, an element cannot be re-added

○ Version vector and the dots are used by the merge

function

CRDT Maps

● ORMap

● ORMultiMap

● LWWMap

● PNCounterMap

CRDT Compose

● CRDT Value can contain another CRDT

● ORSet can contain a G-Counter

● ORMap can contain a LWW Register

CRDT Implementations

● Riak Data Types are convergent replicated

data types
● https://docs.basho.com/riak/kv/2.2.0/learn/concepts/crdts/

● SoundCloud Roshi
○ https://github.com/soundcloud/roshi

● Akka Distributed Data

https://github.com/soundcloud/roshi
https://github.com/soundcloud/roshi

Akka Clustering

Akka

● Actor Based Toolkit

● Simple Concurrency & Distribution

● Error Handling and Self-Healing

● Elastic and Decentralized

● Adaptive Load Balancing

What is an Actor

● Isolated lightweight processes

● Message Based / Event Driven

● Run Asynchronously

● Processes one message at a time

● Sane Concurrency

● Isolated Failure Handling

Actor Systems

● Actor system is the hierarchy of collaborating

actors

● Parent actors delegate work to child actors

● Child actors are supervised by Parent Actors

● Failure can be propagated back up Actor

Hierarchy

Akka Clustering

● Peer-to-peer based cluster membership

● Communicates state via gossip protocols

● No single point of failure or single point of

bottleneck.

● Automatic node failure detector

Gossip Protocol

● Sharing state by gossiping with neighbors

● Each node holds state and picks a random

node to share information with

● Reliable communication is not assumed

Akka Clustering

● Cluster Singletons

● Cluster Roles

● Cluster Events

● Cluster-Aware Routers

● Cluster Sharding

Akka Cluster State - Monotonic!

Akka Distributed Data

Akka Distributed Data

● Replicated in-memory data store

● Share Data between Akka Cluster Nodes

● Low latency and high-availability

● Key-Value store like API

State Based CRDTs

● Akka Distributed Data only supports state

based CvRDT’s

● Require storage of extra data to facilitate

merging

● Entire State of CRDT’s must be disseminated

Delta State Based CRDTs

● Akka 2.5 Introduced Delta State CRDTS

● Only recently applied mutations to a state

are disseminated instead of the entire state

Data Resolution

● Concurrent updates automatically resolved

with monotonic merge function

● Fine Grained Control of Consistency Level of

Reads and Writes

● Update from any node without coordination

Fine Grained Control of Consistency

● WriteLocal, WriteTo(n), WriteMajority, WriteAll

● ReadLocal, ReadFrom, ReadMajority, ReadAll

● Majority is N/2 + 1

● Guaranteed Consistency

○ (nodes_written + nodes_read) > N

Data Distribution

● Data Spread two ways depending on

Consistency Level

● Direct replication to meet Consistency

Level of Write

● Gossip dissemination to remaining nodes

Data Types

● Implements the ReplicatedData Trait

○ Monotonic merge function

● Counters: GCounter, PNCounter

● Sets: GSet, ORSet

● Maps: ORMap, ORMultiMap, LWWMap, PNCounterMap

● Registers: LWWRegister, Flag

Replicated Data Type Scala Interface

trait ReplicatedData {

 type T <: ReplicatedData

 /**

 * Monotonic merge function.

 */

 def merge(that: T): T

}

Replicated Data Type Java Interface

public class TwoPhaseSet extends AbstractReplicatedData<TwoPhaseSet> {

 public final GSet<String> adds;

 public final GSet<String> removals;

 public TwoPhaseSet mergeData(TwoPhaseSet that) {

 return new TwoPhaseSet(this.adds.merge(that.adds),

 this.removals.merge(that.removals));

 }

}

The Replicator Actor

● Performs all Replication

● Started on all cluster nodes participating in Distributed

Data

● The replicator is similar to a key-value store:

○ Keys are strings, values are ReplicatedData

● Data is replicated directly and via gossiping

The Local Replicator

● All Communication is done via the local replicator

● Accessed via the DataReplication extension

● Supported operations are Get, Subscribe, Update and

Delete

val replicator = DistributedData(context.system).replicator

Updating

● Key typed with the distributed data type

● Initial value

● Write consistency -> Once met sends an

UpdateSuccess message back

● Optional request context - used to send response to the

sender on UpdateSuccess message

● Update function

Update Example

Update<LWWMap<LineItem>> update = new Update<>(dataKey,

LWWMap.create(), writeMajority,

 cart -> updateCart(cart, add.item));

replicator.tell(update, self());

Change
Notifications

● Subscription is done by sending a Subscribe message

to the local replicator

● The actor will then receive changed messages

Change Notifications

case c @ Changed(DataKey) =>

 val data = c.get(DataKey)

 println()

 println("Current elements:")

 data.entries.foreach(println)

Pruning Algorithm

● When a node is removed from the cluster a pruning

algorithm is used to collapse data

Additional Resources

● http://doc.akka.io/docs/akka/snapshot/scala/distributed-data.html

● Strong Eventual Consistency and Conflict-free Replicated Data Types talk by Mark Shapiro

○ http://research.microsoft.com/apps/video/default.aspx?id=153540&r=1

● http://book.mixu.net/distsys/eventual.html

● https://www.infoq.com/presentations/crdt-soundcloud?utm_source=infoq&utm_medium=sli

deshare&utm_campaign=slidesharesf

http://doc.akka.io/docs/akka/snapshot/scala/distributed-data.html
http://doc.akka.io/docs/akka/snapshot/scala/distributed-data.html

Questions?

