
Build a Time Series Application
with Spark and HBase

Tugdual Grall
Technical Evangelist
@tgrall
tug@mapr.com
MapR

1

2

Open Source Engines & Tools Commercial Engines & Applications

Enterprise-Grade Platform Services

D
at

a
Pr

oc
es

si
ng

Web-Scale Storage
MapR-FS MapR-DB

Search and
Others

Real Time Unified Security Multi-tenancy Disaster Recovery Global NamespaceHigh Availability

MapR Streams

Cloud and
Managed
Services

Search and
Others

U
nified M

anagem
ent and M

onitoring

Search and
Others

Event StreamingDatabase

Custom
Apps

HDFS API POSIX, NFS HBase API JSON API Kafka API

MapR Converged Data Platform

Agenda

• Time Series

• Apache Spark & Spark Streaming

• Apache HBase

• Apache Kafka & MapR Streams

• Lab

3

About the Lab
• Use Spark & HBase in MapR Cluster

• Option 1: Use a SandBox (Virtual Box VM located on USB
Key)

• Option 2: Use Cloud Instance (SSH/SCP only)

• Content:

• Option 1: spark-streaming-hbase-workshop.zip on USB

• Option 2: download zip from 
https://github.com/tgrall/mapr-streams-spark-hbase-workshop

4

https://github.com/tgrall/mapr-streams-spark-hbase-workshop

Time Series

5

What is a Time Series?

• Stuff with timestamps

• sensor measurements

• system stats

• log files

• ….

6

Got Some Examples?

7

What do we need to do?
• Acquire

• Measurement, transmission, reception

• Store

• Individually, or grouped for some amount of time

• Retrieve

• Ad hoc, flexible, correlate and aggregate

• Analyze and visualize

• We facilitate this via retrieval

18

Acquisition
Not usually our problem

• Sensors

• Data collection – agents, raspberry pi

• Transmission – via LAN/Wan, Mobile Network,
Satellites

• Receipt into system – listening daemon or queue, or
depending on use case writing directly to the database

19

Storage Choice
• Flat files

• Great for rapid ingest with massive data

• Handles essentially any data type

• Less good for data requiring frequent updates

• Harder to find specific ranges

• Traditional RDBMS

• Ingests up to ~10,000/ sec; prefers well structured (numerical) data; expensive

• NoSQL (such as MapR-DB or HBase)

• Easily handle 10,000 rows / sec / node – True linear scaling

• Handles wide variety of data

• Good for frequent updates

• Easily scanned in a range

20

Specific Example

Consider oil drilling rigs

• When drilling wells, there are *lots* of moving parts

• Typically a drilling rig makes about 10K samples/s

• Temperatures, pressures, magnetics, machine
vibration levels, salinity, voltage, currents, many others

• Typical project has 100 rigs

21

General Outline
10K samples / second / rig

x 100 rigs

= 1M samples / second

• But wait, there’s more

• Suppose you want to test your system

• Perhaps with a year of data

• And you want to load that data in << 1 year

• 100x real-time = 100M samples / second

22

Data Storage

• Typical time window is one hour

• Column names are offsets in time window

• Find series-uid in separate table

23

Key 13 43 73 103 …

…

series-uid.time-window 4.5 5.2 6.1 4.9

…

24

Why do we need NoSQL / HBase?  
Relational Model

25

bottleneck

Key colB colC

val val val

xxx val val

Key colB colC

val val val

xxx val val

Key colB colC

val val val

xxx val val

Storage ModelRDBMS HBase

Distributed Joins, Transactions do
not scale

Data that is accessed together is
stored together

HBase is a ColumnFamily oriented Database

• Data is accessed and stored together:

• RowKey is the primary index

• Column Families group similar data by row
key

26

CF_DATA

colA colB colC

Val val

val

CF_STATS

colA colB colC

val val

val

RowKey

series-abc.time-window

series-efg.time-window

Customer id Raw Data Stats

HBase is a Distributed
Database

27

Key
Range

xxxx
xxxx

CF1

colA colB colC

val val

val

CF2

colA colB colC

val val

val

Key
Range

xxxx
xxxx

CF1

colA colB colC

val val

val

CF2

colA colB colC

val val

val

Key
Range

xxxx
xxxx

CF1

colA colB colC

val val

val

CF2

colA colB colC

val val

val

Put, Get by Key

Data is automatically distributed
across the cluster
• Key range is used for horizontal

partitioning

Basic Table Operations
• Create Table, define Column Families before data is imported

• but not the rows keys or number/names of columns
• Low level API, technically more demanding
• Basic data access operations (CRUD):

put Inserts data into rows (both create and update)

get Accesses data from one row

scan Accesses data from a range of rows

delete Delete a row or a range of rows or columns

28

Learn More
• Free Online Training: http://learn.mapr.com

• DEV 320 - Apache HBase Data Model and Architecture

• DEV 325 - Apache HBase Schema Design

• DEV 330 - Developing Apache HBase Applications: Basics

• DEV 335 - Developing Apache HBase Applications:
Advanced

29

http://learn.mapr.com

30

What is Spark?

• Cluster Computing Platform

• Extends “MapReduce” with extensions

• Streaming

• Interactive Analytics

• Run in Memory

31

What is Spark?

Fast

• 100x faster than M/R

32

Logistic regression in Hadoop and Spark

What is Spark?

Ease of Development

• Write programs quickly

• More Operators

• Interactive Shell

• Less Code

33

What is Spark?

Multi Language Support

• Scala

• Python

• Java

• SparkR

34

What is Spark?

Deployment Flexibility

• Deployment
• Local
• Standalone

• Storage
• HDFS
• MapR-FS

35

• YARN
• Mesos

• S3
• Cassandra

Unified Platform

36

Spark SQL
Spark Streaming

(Streaming)
MLlib

(Machine Learning)

Spark Core (General execution engine)

GraphX
(Graph Computation)

Spark Components

37

Driver Program
(application)

SparkContext

Cluster Manager

Worker

Executor

Task Task

Worker

Executor

Task Task

Spark Resilient Distributed Datasets

38

Sensor RDD

W

Executor

P4

W

Executor

P1 P3

W

Executor

P2

sc.textFile P1
8213034705,
95, 2.927373,
jake7870, 0……

P2
8213034705,
115, 2.943484,
Davidbresler2,
1….

P3
8213034705,
100, 2.951285,
gladimacowgirl,
58…

P4
8213034705,
117, 2.998947,
daysrus, 95….

Spark Resilient Distributed Datasets

39

Transformation
Filter()

Action
Count()

RDD

newRDD

Value

Spark Streaming

40

Spark SQL
Spark Streaming

(Streaming)
MLlib

(Machine Learning)

Spark Core (General execution engine)

GraphX
(Graph Computation)

What is Streaming?

• Data Stream:

• Unbounded sequence of data arriving
continuously

• Stream processing:

• Low latency processing, querying, and
analyzing of real time streaming data

41

Why Spark Streaming
• Many applications must process streaming

data

• With the following Requirements:

• Results in near-real-time

• Handle large workloads

• latencies of few seconds

• Use Cases

• Website statistics, monitoring

• IoT

• Fraud detection

• Social network trends

• Advertising click monetization

42

put
put

put
put

Time stamped data

data

• Sensor, System Metrics, Events, log files
• Stock Ticker, User Activity
• Hi Volume, Velocity

Data for real-time
monitoring

What is Spark Streaming?
• Enables scalable, high-throughput, fault-tolerant

stream processing of live data

• Extension of the core Spark

43

Data Sources Data Sinks

Spark Streaming Architecture
• Divide data stream into batches of X seconds

• Called DStream = sequence of RDDs

44

Spark
Streaming

input data
stream

DStream RDD batches

Batch
 interval

data from
time 0 to 1

data from
time 1 to 2

RDD @ time 2

data from
time 2 to 3

RDD @ time 3RDD @ time 1

Process DStream
• Process using transformations

• creates new RDDs

45

transform

Transform
map

reduceByValue
count

DStream
RDDs

Dstream
RDDs

transformtransform

data from
time 0 to 1

data from
time 1 to 2

RDD @ time 2

data from
time 2 to 3

RDD @ time 3RDD @ time 1

RDD @ time 1 RDD @ time 2 RDD @ time 3

46

What is Kafka?
• http://kafka.apache.org/

• Created at LinkedIn, open sourced in 2011

• Implemented in Scala / Java

• Distributed messaging system built to
scale

47

What for?
• Message Queue (!= ESB)

• Realtime Streaming

• Event Sourcing

• Logs

• Change Data Capture

48

Key Concepts
• Feeds of messages are organised in topics

• Processes that publish messages are called
producers

• Processes that subscribed to topic and
process messages are consumers

• A Kafka cluster is made of one or more
brokers (== node)

49

Key Features
• Durable

• Scalable

• Distributed

• Stateless

• Fast

• At least once or at most once

• You need to deal with it!

50

Topics and Partitions

Split topics into partitions for scalability

51

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5

0 1 2 3 4 5 6 7

Partition 0

Partition 1

Partition 2

Writes

Consumer Groups

• Single consumer abstraction for scalability

• Max 1 consumer per partition

• Any number of consumer groups

52

Big Picture

53

Producer

Producer

Producer

Consumer

Consumer

Consumer

More real life Kafka …

54

Zookeeper

Broker 1

Topic A Topic B

Broker 2

Topic A Topic B

Broker 3

Topic A Topic B

Producer

Producer

Producer

Consumer

Consumer

Consumer

MapR Streams
• Distributed messaging system built to scale

• Use Apache Kafka API 0.9.0

• No code change

• Does not use the same “broker” architecture

• Log stored in MapR Storage (Scalable, Secured, Fast, Multi DC)

• No Zookeeper

55

Kafka

56

Zookeeper

Broker 1

Topic A Topic B

Broker 2

Topic A Topic B

Broker 3

Topic A Topic B

Producer

Producer

Producer

Consumer

Consumer

Consumer

MapR Streams

57

Broker 1

Topic A Topic B

Broker 2

Topic A Topic B

Broker 3

Topic A Topic B

Producer

Producer

Producer

Consumer

Consumer

Consumer

Time Series

58

Data for
real-time monitoring

read

Sensor
Time stamped data

HBase

Processing

data

Lab “flow”

59

Convert Line of CSV data to Sensor Object

case class Sensor(resid: String, date: String, time: String,
 hz: Double, disp: Double, flo: Double, sedPPM: Double,
 psi: Double, chlPPM: Double)

def parseSensor(str: String): Sensor = {
 val p = str.split(",")
 Sensor(p(0), p(1), p(2), p(3).toDouble, p(4).toDouble, p(5).toDouble,
 p(6).toDouble, p(7).toDouble, p(8).toDouble)
}

60

Create a DStream

61

batch
time 0-1

linesDStream

batch
time 1-2

batch
time 1-2

DStream: a sequence of RDDs representing
a stream of data

stored in memory as an
RDD

val ssc = new StreamingContext(sparkConf, Seconds(2))
val messages = KafkaUtils.createDirectStream[String, String]  
 (ssc, kafkaParams, topicsSet)

Process DStream

62

map new RDDs created
for every batch

batch
time 0-1

linesDStream RDDs

sensorDstream RDDs

batch
time 1-2

mapmap

batch
time 1-2

val messages = KafkaUtils.createDirectStream[String, String]  
 (ssc, kafkaParams, topicsSet)  
 
val sensorDStream = messages.map(_._2).map(Sensor.parseSensor)

Save to HBase

63

Put objects written
To HBase

batch
time 0-1

linesRDD DStream

sensorRDD Dstream

batch
time 1-2

map

batch
time 1-2

HBase

save save save

map map

rdd.map(Sensor.convertToPut).saveAsHadoopDataset(jobConfig)

output operation: persist data to external storage

Time Series

64

Data for
real-time monitoring

read

Sensor
Time stamped data

HBase

Processing

data

Go !

65

