
Don’t bore your cores!
Anders Ahlgren

Mercur Solutions AB

Hardware? We don’t need no stinkin’ hardware!
• Java ”protects” us from hardware details
• We usually use a simplified mental model

of execution
• Most of the time, this is good
• Sometimes, it can mislead us, and hold

us back

Unless stated otherwise, examples were measured on  
Intel Core i7 mobile ‘Skylake' 2.6 GHz / 2133 MHz memory,
Oracle JVM 1.8, server 64-bit, compressed oops By Source, Fair use,

https://en.wikipedia.org/w/index.php?curid=52517236

https://en.wikipedia.org/w/index.php?curid=52517236

Test mental model #1: parallel stream speedup
long[] a; // large array
…
long s = Arrays.stream(a).sum();

 — vs —

long s = Arrays.stream(a).parallel().sum();

Test mental model #1: parallel stream speedup
long[] a; // large array
…
long s = Arrays.stream(a).sum();

 — vs —

long s = Arrays.stream(a).parallel().sum();

The speedup is limited by memory transfer speed
Core i7 (1-4-2): ≈ 1.9 times faster

40 vCPU Xeon (2-12-2): ≈ 5-8 times faster
 (Xeon memory in performance mode)

Test mental model #2: ordering of operations
static int fun(int[] a) {
 int result = 1;
 for (int i = 0; i < a.length; i++)
 result = result * i + a[i]; // variation (a)
 return result;
}

How does performance change if loop body is replaced by:
 result = result + i * a[i]; // variation (b)

Test mental model #2: ordering of operations
static int fun(int[] a) {
 int result = 1;
 for (int i = 0; i < a.length; i++)
 result = result * i + a[i]; // variation (a)
 return result;
}

How does performance change if loop body is replaced by:
 result = result + i * a[i]; // variation (b)

(b) is faster than (a)
≈ 3 times faster

Test mental model #3: size of binary search
Arrays.binarySearch(int[] a, int key)

Assume many calls made, same a, different key-s, and compare
performance of:

(a) Power of 2: a.length is 4,194,304 = 2
22

(b) Slightly larger: a.length is 4,198,399 = 2
22

+ 4095

Test mental model #3: size of binary search
Arrays.binarySearch(int[] a, int key)

Assume many calls made, same a, different key-s, and compare
performance of:

(a) Power of 2: a.length is 4,194,304 = 2
22

(b) Slightly larger: a.length is 4,198,399 = 2
22

+ 4095

(b) is faster than (a)
≈ 1.4 times faster

Multi-core world, or monster-core world?
• Intel Xeon Broadwell-E5 (22 cores), 2016:

7,200 M transistors (14 nm), or

327 M transistors / core

• UC Davis KiloCore (1,000 cores), 2016:
621 M transistors (32 nm*), or

0.6 M transistors / core
KiloCore die

(Image source UC Davis)
* For context, 32 nm Intel Core

was released January 2010

Ordering of operations revisited
(a) r = r * i + a[i];

(b) r = r + i * a[i];

CPU can execute instructions in parallel

Can’t start computation until inputs available (duh!)

JVM unrolls loops, body repeated 8 times (or 4, or…)

(a) basically multiply / add (≈ 4.3 cycles / iter if 8-way)  
 

(b) unrolled body: load / multiply / add / drain pipeline  
 (≈ 1.4 cycles / iter if 8-way, ≈ 2.1 if 4-way)

Image by Patrick Bell from Haddonfield, NJ, USA - new 6-5-06 064,
CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=2187985

https://commons.wikimedia.org/w/index.php?curid=2187985

DIY unrolling: the ”before” picture
// Taken from java.util.Arrays
public static int hashCode(int a[]) {
 if (a == null)
 return 0;

 int result = 1;
 for (int element : a)
 result = 31 * result + element;

 return result;
}

DIY unrolling: the ”before” picture
// Taken from java.util.Arrays
public static int hashCode(int a[]) {
 if (a == null)
 return 0;

 int result = 1;
 for (int element : a)
 result = 31 * result + element;

 return result;
}

JVM will optimize
31 * r

to
(r << 5) - r
Gain on x86 is

moderate, 
≈ 1.3 times

DIY unrolling: the expansion
r8

31⋅r7 + a7
31⋅(31⋅r6 + a6) + a7

31⋅(31⋅(31⋅r5 + a5) + a6) + a7
31⋅(31⋅(31⋅(31⋅r4 + a4)+ a5) + a6) + a7

31⋅(31⋅(31⋅(31⋅(31⋅r3 + a3)+ a4)+ a5) + a6) + a7
31⋅(31⋅(31⋅(31⋅(31⋅(31⋅r2 + a2) + a3)+ a4)+ a5) + a6) + a7

31⋅(31⋅(31⋅(31⋅(31⋅(31⋅(31⋅r1 + a1) + a2) + a3)+ a4)+ a5) + a6) + a7
31⋅(31⋅(31⋅(31⋅(31⋅(31⋅(31⋅(31⋅r0 + a0) + a1) + a2) + a3)+ a4)+ a5) + a6) + a7

DIY unrolling: the ”after” picture
int result = 1;  
for (int i = 0; i < a.length - 7; i += 8) {  
 result = 0x94446F01 * result  
 + 0x67E12CDF * a[i] + 887503681 * a[i+1]  
 + 28629151 * a[i+2] + 923521 * a[i+3]  
 + 29791 * a[i+4] + 961 * a[i+5]  
 + 31 * a[i+6] + a[i+7]; 
}  
for (int i = a.length & ~7; i < a.length; i++) {  
 result = 31 * result + a[i];  
}  
return result;

DIY unrolling: the ”after” picture
int result = 1;  
for (int i = 0; i < a.length - 7; i += 8) {  
 result = 0x94446F01 * result  
 + 0x67E12CDF * a[i] + 887503681 * a[i+1]  
 + 28629151 * a[i+2] + 923521 * a[i+3]  
 + 29791 * a[i+4] + 961 * a[i+5]  
 + 31 * a[i+6] + a[i+7]; 
}  
for (int i = a.length & ~7; i < a.length; i++) {  
 result = 31 * result + a[i];  
}  
return result; ≈ 1.9 times faster

Chasing references

ArrayList
object
header

elementData

size

Object[]
object
header
length

[0]

[1]

[2]

[3]

[4]

String
object
header
value

hash

char[]
object
header
length

’H’ ’e’

’l’ ’l’

’o’ ’ ’

’W’ ’o’

’r’ ’l’

’d’ ’!’
ArrayList<String> list;

*

*

*

*

*

**

Location, Location, Location
String[] a = Files.lines(file.toPath())  
 .toArray(n -> new String[n]);  
 

for (int i = 0; i < a.length; i++)  
 a[i] = new String(a[i]); // Ewww!  
 

Arrays.sort(a); // Seems innocent enough?  
 
… This is the part we are measuring: 
 
long c = Arrays.stream(a)  
 .filter(s -> s.endsWith("?"))  
 .count();

Location, Location, Location
String[] a = Files.lines(file.toPath())  
 .toArray(n -> new String[n]);  
 

for (int i = 0; i < a.length; i++)  
 a[i] = new String(a[i]); // Ewww!  
 

Arrays.sort(a); // Seems innocent enough?  
 
… This is the part we are measuring: 
 
long c = Arrays.stream(a)  
 .filter(s -> s.endsWith("?"))  
 .count();

• No guarantees about location of objects
• In practice, starts in order: a[0], a[0].value, a[1], a[1].value, …
• GC fragments, here each consecutive run averages ≈15 strings

Location, Location, Location
String[] a = Files.lines(file.toPath())  
 .toArray(n -> new String[n]);  
 

for (int i = 0; i < a.length; i++)  
 a[i] = new String(a[i]); // Ewww!  
 

Arrays.sort(a); // Seems innocent enough?  
 
… This is the part we are measuring: 
 
long c = Arrays.stream(a)  
 .filter(s -> s.endsWith("?"))  
 .count();

• No guarantees about location of objects
• In practice, starts in order: a[0], a[0].value, a[1], a[1].value, …
• GC fragments, here each consecutive run averages ≈15 strings

Fragmentation from GC is moderate,  
performance is OK

Location, Location, Location
String[] a = Files.lines(file.toPath())  
 .toArray(n -> new String[n]); 
 

for (int i = 0; i < a.length; i++)  
 a[i] = new String(a[i]); // Ewww!  
 

Arrays.sort(a); // Seems innocent enough?  
 
… This is the part we are measuring: 
 
long c = Arrays.stream(a)  
 .filter(s -> s.endsWith("?")) 
 .count();

Location, Location, Location
String[] a = Files.lines(file.toPath())  
 .toArray(n -> new String[n]); 
 

for (int i = 0; i < a.length; i++)  
 a[i] = new String(a[i]); // Ewww!  
 

Arrays.sort(a); // Seems innocent enough?  
 
… This is the part we are measuring: 
 
long c = Arrays.stream(a)  
 .filter(s -> s.endsWith("?")) 
 .count();

≈ 4 times slower

Location, Location, Location
String[] a = Files.lines(file.toPath())  
 .toArray(n -> new String[n]); 
 

for (int i = 0; i < a.length; i++)  
 a[i] = new String(a[i]); // Ewww!  
 

Arrays.sort(a); // Seems innocent enough?  
 
… This is the part we are measuring: 
 
long c = Arrays.stream(a)  
 .filter(s -> s.endsWith("?")) 
 .count();

Location, Location, Location
String[] a = Files.lines(file.toPath())  
 .toArray(n -> new String[n]); 
 

for (int i = 0; i < a.length; i++)  
 a[i] = new String(a[i]); // Ewww!  
 

Arrays.sort(a); // Seems innocent enough?  
 
… This is the part we are measuring: 
 
long c = Arrays.stream(a)  
 .filter(s -> s.endsWith("?")) 
 .count();

≈ 7 times slower

Experimenting with locations: Chasing int
• Want to investigate location effects details
• Clearly, quite tricky using object references…
• Instead, array of int (assuming compressed oops; otherwise long)

static int chaseInts(int[] a) {  
 int t = 0;  
 

 for (int i = 0; i < N; i++)  
 t = a[t];  
 

 return t; // beware dead code in micro benchmarks 
}

You won’t believe how slow memory can be
Running chaseInts on a large array with random “jumping around”:

1,000,000,000 iterations ≈ 130 s
≈ 130 ns; ≈ 340 cycles per iteration (test system is 2.6 GHz)

Each iteration reads 4 bytes from memory
4 B ⋅ 1,000,000,000 / (130 s) ≈ 30 MB/s

20 times slower than SATA 3 SSD…!
Reading SSD sequentially, so unfair comparison

That’s where the caches come in…
C

lo
ck

 c
yc

le
s

/ a
cc

es
s

0

100

200

300

400

Array size in KiB

1 10 100 1000 10000 100000

L1 
32

KiB

L2 
256
KiB

L3 
6144

KiB

≈ 4 ≈ 9
≈ 31

Cache lines, pre-fetching, and dependencies
Caches handle data in blocks (64 byte on x86), called cache lines
⇒ cheaper to access several locations in the same cache line

Sequential access makes processor pre-fetch next cache line into L1
 (unless crossing memory page boundary)

The chaseInts method is bounded by L1 latency (4 cycles),  
because the loads are data dependent — can’t be done in parallel

Compare Arrays.stream(a).sum() which is ≈ 4 times faster

TMI…?
”64 byte cache lines” 

”32KiB L1 data cache”
• Should we really hard-wire assumptions about size of cache lines,

and sizes of the different levels of caches into Java code…?!
• Computer science answer: The class of cache-oblivious

algorithms will work regardless of details about the caches
• Practical answer: Getting the sizes wrong is much better than

ignoring the existence of caches

So — how does all this change how we code?
• Some techniques are generally applicable good practice:

• Move fields to class that actually use them
• Don’t design data structure first and adapt code to fit them;  

instead evolve both iteratively to harmonize with each other

• Don’t break things down in “systematical” order, but rather in
frequency order — focus on the happy-path
• The real power of this comes from synergy effects

The bad news: no big gain without big pain
Serious cache-optimization on JVM require* low-level, time-consuming,
and perhaps ugly, rewrites.

* There are ObjectLayout project (and of course Project Valhalla)

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up
our opportunities in that critical 3%.

 Donald E. Knuth

Don’t have a critical 3%? More of 80-20 rule, perhaps?  
That might be fixable by designing differently

Going primitive
class PointArr { // JVM supported value types, anyone?  
 private final int[] xs;  
 private final int[] xs; // or interleave x-y-x-y  
 … // or pack hi-lo into longs  
 int getX(int index) { … }  
 int getY(int index) { … }  
}
• Not that painful. Really. Remember, just in the 3%.

Sort? Why would you want to sort?  
What, you want strings too? No-one uses strings anymore!

The back-and-forth compromise
• Translate back-and-forth between arrays-of-primitives and array-of-object!
• Could be “original” object (like Point), or represented by an inner class:

private class Pointy {  
 final int index; … // hashCode, equals, …

• Most important use cases work directly on the arrays of primitives, less
important can take the detour (in particular sorting and hashing)

• Bored processor has computational resources to spare
• Arrays-of-primitive pre-fetches, array-of-object are done in blocks fitting cache

• Even “Location, Location, Location” example only ≈ 1.4 times slower

Bit-twiddling for fun and profit
• Algorithms depending on tricky bit-twiddling are often fast (and a

lot of fun!) but not all that common

• Simple, light-weight packing of data is nearly always a gain, and
very frequently applicable

• Often, you can fit quite a lot into a handful of long

• BitSet (and similar) are sadly under-utilized — make a habit of
looking for new use-cases for them

Complexity cache clues
Linear: exploit pre-fetching (duh!)
Super-linear: pre-fetching + splitting data in cache-sized blocks  
 (explicitly, or automagically through divide-and-conquer)

Merge sort and quicksort good, heapsort bad
Sub-linear: exploit cache lines

Contrast B-trees with binary trees
Linear probing and K-V-K-V layout for hashing

Example: Binary search and cache lines
• Binary search works on an array, but treats it like a tree

• Depth 0: nodes at: “⅛” “¼” “⅜” “½” “⅝” “¾” “⅞”
• Depth 1: nodes at: “⅛” “¼” “⅜” “½” “⅝” “¾” “⅞”
• Depth 2: nodes at: “⅛” “¼” “⅜” “½” “⅝” “¾” “⅞”

• “Top of the tree” is small, so several levels fit into cache
• But if n = 2m+k, top k level indices share low m bits ⇒ cache conflicts
• Only a single element is used in each cache line

• “Bottom of the tree” is consecutive locations; good for cache lines

An even more cache-friendly alternative
• Imagine Array.binarySearch(int[] a, int key) is critical, 

on an array that doesn’t fit cache (a bit far fetched; it’s just an example…)
• Introduce a new class wrapping the array:

IntSearcher searcher = new IntSearcher(a);  
…  
int ip = searcher.binarySearch(key);

• IntSearcher adds second array encoding a 16-way tree
• Size roughly a.length/16 + a.length/256 + a.length/4096 +…

An even more cache-friendly alternative
• Imagine Array.binarySearch(int[] a, int key) is critical, 

on an array that doesn’t fit cache (a bit far fetched; it’s just an example…)
• Introduce a new class wrapping the array:

IntSearcher searcher = new IntSearcher(a);  
…  
int ip = searcher.binarySearch(key);

• IntSearcher adds second array encoding a 16-way tree
• Size roughly a.length/16 + a.length/256 + a.length/4096 +…

≈ 1.5 times faster

The “string free zone”
• In bordered-off region, represent (relevant) strings with int

• Say, content of specific column in a database shard
• When (relevant) string enters a region, it is translated to int

• If compareTo is important, translation may reflect ordering
• When (relevant) string exits the region, translate back
• Advantages: cache locality, footprint, fast compareTo,…
• Needs few strings enter, especially (in ordered cases) those not

already represented in the region (may invalidate mapping)

Typical optimizing cycle
1. Profile your program on important use case
2. Find the largest bottleneck, and address it
3. Repeat until you are happy, or optimization budget spent, or

diminishing returns hurts too much

• Great for finding bugs, like accidental n2 behavior
• Hill-climbing — gets you higher, but often miss the top
• 90-10 or 80-20 rule ⇒ quickly diminishing returns

“Distilling” code before normal optimize
1. Describe the absolute core of what needs to be done in a simple way,

omit annoying parts
2. Can you do anything to make reality closer to description? Try to move

(not necessarily remove) stuff from the core code
• Pre- and post-processing
• Transformation to other data structures

3. Re-apply happy path and data/code harmony ideas
4. Repeat and refine

May get you from Pareto’s 80-20 to Knuth’s “critical 3%”

Closing words
• Understanding modern hardware is the first step

• How much effort should you spend on performance?

• Which techniques applies to your problem?

• You will have to adapt them to your situation

• You may need to invent new ones

• If it were easy, we would be the ones bored, right?

Any questions?

?

