

IS IOT A SECURITY NIGHTMARE?

Shahid Raza, PhD Director, Security Lab

shahid@sics.se

Research Institutes of Sweden **RISE SICS**

Three have become one - RISE

The RISE institutes Innventia, SP and Swedish ICT have merged in order to become a stronger research and innovation partner for businesses and society.

Turnover 21 Million Euro + 30 Years of state of the art computer science Funded by governmental research programs, industry and the EU

Staff 200 76 Ph.D. 32 Professors

Non-profit research organization

The Reality of IoT

- IoT manufacturers have been ignoring security in the rush to get to market first
- IoT security now is like IT security in the 1990s
- "There is no Internet of Things, only other people's computers in your house."
 - -- Jacob Hoffman-Andrews

Attack surface increases...

Attackers now have the following options:

- 1. IoT Backend servers
- **2.** IoT Gateways
- **3.** IoT Devices
- **4**. IoT sensors/actuators
- 5. The communications links between them all

An Example IoT attack

The Mirai Botnet

- The most impactful attack by IoT devices [October 21, 2016]
- DNS attack (Dyn)
 - Amazon, Spotify, Netflix, Twitter, etc. successfully attacks

An eye-opener for vendors not considering cybersecurity as a built-in component in their systems/solutions.

Internet of Things (IoT)

- Network of globally identifiable physical objects/things
 - Mostly resource-constrained, lossy wireless networks
 - Multi-hop
 - Unattended deployments
 - Extremely heterogeneous

- IPv6, an IoT enabling technology and integration layer
- IPv6 over Low power Wireless Personal Area Network (6LoWPAN)

Communication Security in the IoT

Communication Security in the IoT

- Per hop security
- End-to-End (E2E) security

IoT Protocols

IEEE 802.15.4-based IoT Application Layer Size

- Total IEEE 802.15.4 Maximum Transmission Unit (MTU) size: 127 bytes
 - After IEEE 802.15.4 header (25 bytes): 102 bytes
 - After IEEE 802.15.4 security (21 bytes): 81 bytes
 - After IPv6 header (40 bytes): 41 bytes
 - After UDP header (8 bytes): 33 bytes
 - Therefore, we only have **33** bytes for the UDP payload.

After 6LoWPAN compression

- The 48 bytes IPv6 + UDP header, in the best cases, becomes 6 bytes
 - IPv6 link-local with UDP
- In the best case, we have **75** bytes for the UDP payload

IoT and Security Protocols

Secure CoAP (CoAPs)

- CoAP enables secure web in the IoTHTTP + TLS = HTTPS
 - Reliable and synchronous transport (TCP)
 - -CoAP + DTLS = CoAPs
 - Unreliable and asynchronous transport (UDP)

coaps://mySite:port/myResource
https://mySite:port/myResource

The DTLS Handshake

Extending 6LoWPAN-compression to DTLS

Octet 0	Octet 1	Octet 2	Octet 3									
Versioin Tr	affic Class	Flow Label		BIT 0 1 2 3 4 5 6 7								
Paylo	ad Length	Next Header	Hop Limit									
	Source Add	drass (128 hits)	<u> </u>	1	Recc	ora+r	and	зпак	e (1	LOWPA	IN_GH	C_RHS
Source Address (126 bits)				[1	0	0	1	v	EC	SN	1
	Destination A	ddress (128 bits)]	Recc	ord o	only	(LO	WPAI	и_сно	"_R)	
Sour	Source Port Destination Port				v:	Ver	sion					
Le	ength	Che	cksum		EC:	Epo	ch		mbo	*		
Content_type	Ve	rsion	Epoch		F:	Fra	gmen	t	mbe	-		
Fnoch												
Еросп	Sequer	nce Number	Longth Decord									
<u></u>		······	Lengui_Kecoru	I	Oato	+ 0		0.0	tot 1		0	tot 2
Longth Dogord	· · · · Message Type	Leng	,th_Handshake	-	Otte		WPAN 1	Octet 1 Octet 2				
Length_Record						LO						
Length_Handshake	Message	e Sequence	Fragment Offset	5 0		duogo			Deat	In ation A	dduooo	
Length_Handshake	Messag ent Offset	e Sequence Fragmen	Fragment Offset	So	ource Ad	ddress			Dest	ination A	ddress	
Length_Handshake	ent Offset	e Sequence Fragmen rsion	Fragment Offset t Length	So S Po	ource Ad	ddress D Port	t		Dest	ination A Checks	ddress um	
Length_Handshake	Messag ent Offset Ve	e Sequence Fragmen rsion	Fragment Offset t Length	So S Po	ource Ad ort Ep	ddress D Port			Desti Se	ination A Checks quence N	ddress um Iumber	
Length_Handshake	ent Offset Ve Client Ran	e Sequence Fragmen rsion dom (32 bytes)	Fragment Offset t Length	So S Po	ource Ad ort Ep	ddress D Port ooch Messa	age Sequ	ence	Dest	ination A Checks quence N	ddress um umber	N_NHC_C
Length_Handshake Fragment Length Session_ID Length	Messag ent Offset Ve Client Ran Cookie Length	e Sequence Fragmen rsion dom (32 bytes) Cipher Su	Fragment Offset t Length ites Length	So S Pc	ource Ad ort Ep	ddress D Port ooch Messa	age Sequ	ence	Desti	ination A Checks quence N	ddress um lumber LOWPAI	N_NHC_C

IP Datagram with ClientHello

Compressed ClientHello

Lightweight DTLS

• Example: *IP datagram with ClientHello*

Protocol	Uncompressed [bytes]	Compressed [bytes]
IP	40	7
UDP	8	4
DTLS Record	13	7
DTLS Handshake	12	1
ClientHello (Minimal)	42	17
Total	115	35

Shahid Raza, et al., *Lithe: Lightweight Secure CoAP for the Internet of Things*. IEEE Sensors Journal, 13(10), 3711-3720, October 2013.

Lightweight DTLS

• Header size comparison

DTLS Header	Without Compression [bit]	With Compression [bit]	%Saving
Record	104	40	62%
Handshake	96	24	75%
ClientHello	336	264	23%
ServerHello	304	264	14%

IP security (IPsec)

End-to-End security at the network layer

- Authentication Header (AH)
 - Integrity and authentication
- Encapsulated Security Payload (ESP)
 - Confidentiality and optionally integrity and authentication
 - Transport and Tunnel modes
 - Manually shared keys or use Internet Key Exchange (IKE)
 - Recommended for IPv6

IEEE 802.15.4 Security

Per-hop security at the link layer

- The application controls the security required
- By default "NO Security"
- Four types of packets
 - Beacon, Data, ACK, Control packets for MAC Layer
- NO Security for ACK packets

Shahid Raza, et al., Secure Communication for the Internet of Things - A Comparison of Link-Layer Security and IPsec for 6LoWPAN. Journal of Security and Communication Networks, 7(12), 2014

Lets use them

- Contiki OS
 - Open source open license operating system for IoT
 - Implementations of most IoT protocols
 - IPv6
 - 6LoWPAN
 - CoAP, RPL
 - IEEE 802.15.4
 - IPsec
 - IKEv2
 - **DTLS**
 - Object security
 - OAuth 2.0 (Coming...)
- SICSthSense

• An open source and open license cloud platform for IoT

Performance Evaluation

IKEv2 Vs. DTLS Handshake (Cont.)

- Using the Contiki OS and with
 - ECC
 - With and without CC2538 crypto hardware
 - Certificate-based mode

Key Management in IoT

Security Modes

- Pre-shared key (PSK) State-of-the-art in sensor network
- Raw-public key (RPK)
- **Certificate-based -** *State-of-the-art in Internet*

DTLS with Scalable Symmetric Keys

- An IoT node needs to recognize and remember only one device, the Trust Anchor (TA)
- DTLS Standard compliant

SE

Shahid Raza, et al., *S3K: Scalable Security with Symmetric Keys - DTLS Key Establishment for the Internet of Things.* IEEE Transactions on Automation Science and Engineering, 2016

Digital Certificates in the IoT

- Certificate based cyber security protocols
 - Datagram TLS (DTLS)
 - IKEv2/IPsec
 - Object security
- IoT Standards specifying digital certificates
 - CoAP
 - LwM2M
 - IPSO Objects
 - ETSI

Enrollment

• Process of certifying digital keys/certificates

•

A Current Research Project

 <u>The CEBOT project</u>: It aims to equip IoT devices with capabilities that will enable them to obtain digital certificate(s) in a secure and automated way and by using the communication protocols that these devices speak.

SWEDISH

SICS

neXus

Partners

٠

- SICS Swedish ICT, Stockholm
 - Technology Nexus (neXus)
- Endorsers

Cyber security at RISE SICS

IoT security

- VINNOVA SIP-IoT CEBOT
- Eurostars SecureIoT
- H2020 NobelGrid
- EIT **ACTIVE**
- Celtic-Plus CyberWI

5G Security

- H2020 5G-ENSURE
- H2020 5G-ENSURE-II (in-submission)

Cloud security

- H2020 COLA
- H2020 PaaSword

Software security / Virtualization

- VINNOVA UDI SECONDS
- ARTEMIS EMC²
- SSF PROSPE
- SICS Internal Ransomware

Blockchain

- Funding by a SICS internal project
- A couple of proposals in-submission

Network and Data Security in the IoT

- Secure Storage in the IoT
 - Fusion: Coalesced Confidential Storage and Communication Framework for the IoT.
 Journal of Security and Communication Networks (Wiley), March 2015.
- Network Security in the IoT
 - SVELTE: Real-time Intrusion Detection in the Internet of Things.
 Ad Hoc Networks (Elsevier), 11(8), 2661-2674, November, 2013

THANKS...

Shahid Raza, PhD Director, Security Lab

shahid@sics.se

Research Institutes of Sweden **RISE SICS**

Med stöd från:

STRATEGISKA INNOVATIONS-PROGRAM