
Ryan Knight
James Ward

@TODO
@_JamesWard

Modern Data Pipelines

Ryan Knight

Architect at Starbucks

• Distributed Systems guru

• Scala, Akka, Cassandra Expert & Trainer

• Skis with his 5 boys in Park City, UT

• First time to jFokus

James Ward

Developer at Salesforce

• Back-end Developer

• Creator of WebJars

• Blog: www.jamesward.com

• Not a JavaScript Fan

• In love with FP

Code

github.com/jamesward/koober

Agenda

• Modern Data Pipeline Overview

• Kafka

• Akka Streams

• Play Framework

• Flink

• Cassandra

• Spark Streaming

Modern Data Pipelines
Real-Time, Distributed, Decoupled

Why Streaming Pipelines
 Real Time Value

• Allow business to react to data in real-time instead of batch

 Real Time Intelligence
• Provide real-time information so that the apps can use the information

and adapt their user interactions

 Distributed data processing that is both scalable and resilient

 Clickstream analysis

 Real-time anomaly detection

 Instant (< 10 s) feedback - ex. real time concurrent video viewers / page
views

Data Pipeline Requirements

• Ability to process massive amounts of data

• Handle data from a wider variety of sources

• Highly Available

• Resilient - not just fault tolerant

• Distributed for Scale of Data and Transactions

• Elastic

• Uniformity - all-JVM based for easy deployment and management

Traditional ETL

Data Integration Today

Data Pipelines today

http://ferd.ca/queues-don-t-fix-overload.html

Backpressure

 http://ferd.ca/queues-don-t-fix-overload.html

Data Hub / Stream Processing

Pipeline Architecture

Play App

Kafka
Spark

Streaming

Spark
core, streaming,
graphx, mllib, ...

Cassandra

Spark
Notebook

Web Client

Cold Data

Flink

Koober

github.com/jamesward/koober

Kafka
Distributed Commit Logs

What is Kafka?

 Kafka is a distributed and partitioned commit log
 Replacement for traditional message queues and publish subscribe

systems
 Central Data Backbone or Hub
 Designed to scale transparently with replication across the cluster

Core Principles

1. One pipeline to rule them all
2. Stream processing >> messaging
3. Clusters not servers
4. Pull Not Push

Kafka Characteristics

 Scalability of a filesystem
• Hundreds of MB/sec/server throughput
• Many TB per server

 Durable - Guarantees of a database
• Messages strictly ordered
• All data persistent

 Distributed by default
• Replication
• Partitioning model

Kafka is about logs

The Event Log

 Append-Only Logging

 Database of Facts

 Disks are Cheap

 Why Delete Data any more?

 Replay Events

Append Only Logging

Logs: pub/sub done right

Kafka Overview
• Producers write data to brokers.

• Consumers read data from brokers.

• Brokers - Each server running Kafka is called a
broker.

• All this is distributed.

• Data

– Data is stored in topics.

– Topics are split into partitions, which are
replicated.

• Built in Parallelism and Scale

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Partitions

 A topic consists of partitions.
 Partition: ordered + immutable sequence of messages

that is continually appended to

Partition offsets

• Offset: messages in the partitions are each assigned a unique
(per partition) and sequential id called the offset
• Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1

Example:
A Fault-tolerant CEO Hash Table

Operations
Final State

Kafka Log

Heroku Kafka

• Managed Kafka Cloud Service
• https://www.heroku.com/kafka

Code

Akka Streams
Reactive Streams Built on Akka

Reactive Streams
A JVM standard for asynchronous stream processing with non-blocking back pressure

Akka Streams

• Powered by Akka Actors

• Impl of Reactive Streams

• Actors can be used directly or just internally

• Stream processing functions: map, filter, fold, etc

Sink & Source

val source = Source.repeat("hello, world")
val sink = Sink.foreach(println)
val flow = source to sink
flow.run()

Code

Play Framework
Web Framework Built on Akka Streams

Play Framework

Declarative Routing:

GET /foo controllers.Foo.do

Controllers Hold Stateless Functions:

class Foo {

 def do() = Action {

 Ok("hello, world")

 }

}

Scala & Java – Built on Akka Streams

Reactive Requests

def doLater = Action.async {

 Promise.timeout(Ok("hello, world"), 5.seconds)

}

def reactiveRest = Action.async {

ws.url("http://api.foo.com/bar").get().map { response =>

Ok(response.json)

}

}

Don't block in wait states!

WebSockets

def ws = WebSocket.accept { request =>

 val sink = ...

 val source = ...

 Flow.fromSinkAndSource(Sink.ignore, source)

}

Built on Akka Streams

Views

app/views/blah.scala.html

@(foo: String)

<html>

<body>

 @foo

</body>

</html>

Action {

 Ok(views.html.blah("bar"))

}

<html>

<body>

 bar

</body>

</html>

Serverside Templating with a Subset of Scala

Demo & Code

Flink
Real-time Data Analytics

Flink

• Bounded & Unbounded Data Sets

• Stream processing

• Distributed Core
• Fault Tolerant

• Clustered

• Flexible Windowing

Real-time Data Analytics

Apache Flink
Continuous Processing for Unbounded Datasets

λ

count() 5

Windowing
Bounding with Time, Count, Session, or Data

λ

count() 21s 1s 3

Batch Processing
Stream Processing on Finite Streams

λ

count() 4

Data Processing

• Aggregate / Accumulate

• Transform

• Filter

• Sort

fold(), reduce(), sum(), min()

map(), flatMap()

filter(), distinct()

sortGroup(), sortPartition()

What can we do?

λ

Apache Flink
Architecture

Partitioning
Network Distribution

Demo & Code

Cassandra
Distributed NoSQL Database

Challenges with Relational Databases

• How do you scale and maintain high-availability with a
monolithic database?

• Is it possible to have ACID compliant distributed transactions?
• How can I synchronize a distributed data store?
• How do I resolve differing views of data?

56

Goals of a Distributed Database
• Consistency is not practical - give it up!
• Manual sharding & rebalancing is hard - Automatic

Sharding!
• Every moving part makes systems more complex
• Master / slave creates a Single Point of Failure / Bottleneck

- Simplify Architecture!
• Scaling up is expensive - Reduce Cost
• Leverage cloud / commodity hardware

Confidential

What is Cassandra?

Distributed Database

✓ Individual DBs (nodes)

✓ Working in a cluster

✓ Nothing is shared

C*

Confidential

Cassandra Cluster

• Nodes in a peer-to-peer cluster
• No single point of failure

• Built in data replication
• Data is always available
• 100% Uptime

• Across data centers
• Failure avoidance

Multi-Data Center Design

Confidential

Why Cassandra?
It has a flexible data model
Tables, wide rows, partitioned and distributed
✓ Data
✓ Blobs (documents, files, images)
✓ Collections (Sets, Lists, Maps)
✓ UDTs
Access it with CQL ← familiar syntax to SQL

Two knobs control Cassandra fault tolerance

How many copies of the data should exist?

Replication Factor (server side)

Client

B
AD

C
AB

A
CD

D
BC

Write	A

RF=3

Two knobs control Cassandra fault tolerance
Consistency Level (client side)

Client

B
AD

C
AB

A
CD

D
BC

Write	A

CL=QUORUM

Client

B
AD

C
AB

A
CD

D
BC

Write	A

CL=ONE

How many replicas do we need to hear from before we acknowledge?

Consistency Levels

ONE – one replica from any DC

LOCAL_ONE – one replica from local DC

QUORUM – 51% of replicas from any DC

LOCAL_QUORUM – 51% of replicas from local DC

ALL – all replicas

TWO

Applies to both Reads and Writes (i.e. is set on each query)

How many replicas we need to hear from can affect
how quickly we can read and write data in
Cassandra?

Consistency Level and Speed

Client

B
AD

C
AB

A
CD

D
BC

5 µs ack

300 µs ack

12 µs ack
12 µs ack

Read	A
(CL=QUORUM)

Consistency Level choice affects availability
Consistency Level and Availability

Client

B
AD

C
AB

A
CD

D
BC

A=2

A=2

A=2

Read	A
(CL=QUORUM)

For example, QUORUM can tolerate one replica being down
and still be available (in RF=3)

Reads in the cluster
Same as writes in the cluster, reads are coordinated
Any node can be the Coordinator Node

Client

B
AD

C
AB

A
CD

D
BC

Read	A
(CL=QUORUM)

Coordinator	Node

Spark Cassandra Connector

Spark Cassandra Connector

 Data locality-aware (speed)

 Read from and Write to Cassandra

 Cassandra Tables Exposed as RDD and DataFrames

 Server-Side filters (where clauses)

 Cross-table operations (JOIN, UNION, etc.)

 Mapping of Java Types to Cassandra Types

●70

Code

Spark Streaming
Stream Processing Built on Spark

Hadoop?

Hadoop Limitations

• Master / Slave Architecture
• Every Processing Step requires Disk IO
• Difficult API and Programming Model
• Designed for batch-mode jobs
• No even-streaming / real-time
• Complex Ecosystem

What is Spark?
 Fast and general compute engine for large-scale data processing

 Fault Tolerant Distributed Datasets

 Distributed Transformation on Datasets

 Integrated Batch, Iterative and Streaming Analysis

 In Memory Storage with Spill-over to Disk

Advantages of Spark
• Improves efficiency through:
• In-memory data sharing
• General computation graphs - Lazy Evaluates Data
• 10x faster on disk, 100x faster in memory than Hadoop MR

• Improves usability through:
• Rich APIs in Java, Scala, Py..??
• 2 to 5x less code
• Interactive shell

Application
(Spark Driver)

Spark Master

Worker

Spark Components

You application code
which creates the SparkContext

A process which shells out to create
a Executor JVM

A Process which Manages the
Resources of the Spark Cluster

These processes are all separate and require networking
to communicate

Hosting
Application UI

:4040

Hosting
Spark Master UI

:7080

WorkerWorkerWorkerWorker

Resilient Distributed Datasets (RDD)

• The primary abstraction in Spark
• Collection of data stored in the Spark Cluster
• Fault-tolerant
• Enables parallel processing on data sets
• In-Memory or On-Disk

RDD Operations
Transformations - Similar to scala collections API
Produce new RDDs:
filter, flatmap, map, distinct, groupBy,
union, zip, reduceByKey, subtract

Actions - Require materialization of the records to generate a value
collect: Array[T], count, fold, reduce..

DataFrame
• Distributed collection of data

• Similar to a Table in a RDBMS

• Common API for reading/writing data

• API for selecting, filtering, aggregating
and plotting structured data

DataFrame Part 2
• Sources such as Cassandra, structured data files, tables in

Hive, external databases, or existing RDDs.

• Optimization and code generation through the Spark SQL
Catalyst optimizer

• Decorator around RDD - Previously SchemaRDD

Spark Versus Spark Streaming

Spark Streaming Data Sources

Spark Streaming General Architecture

DStream Micro Batches

Windowing

Windowing

Streaming Resiliency without Kafka

• Streaming uses aggressive checkpointing and in-memory data replication to improve

resiliency.

• Frequent checkpointing keeps RDD lineages down to a reasonable size.

• Checkpointing and replication mandatory since streams don’t have source data files to

reconstruct lost RDD partitions (except for the directory ingest case).

• Write Ahead Logging to prevent Data Loss

Direct Kafka Streaming w/ Kafka Direct API

• Use Kafka Direct Approach (No Receivers)

• Queries Kafka Directly

• Automatically Parallelizes based on Kafka Partitions

• (Mostly) Exactly Once Processing - Only Move Offset after

Processing

• Resiliency without copying data

Demo & Code

