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Modern Data Pipelines
Real-Time, Distributed, Decoupled



Why Streaming Pipelines
 Real Time Value

• Allow business to react to data in real-time instead of batch

 Real Time Intelligence
• Provide real-time information so that the apps can use the information 

and adapt their user interactions

 Distributed data processing that is both scalable and resilient

 Clickstream analysis

 Real-time anomaly detection

 Instant (< 10 s) feedback - ex. real time concurrent video viewers / page 
views



Data Pipeline Requirements

• Ability to process massive amounts of data

• Handle data from a wider variety of sources

• Highly Available

• Resilient - not just fault tolerant

• Distributed for Scale of Data and Transactions

• Elastic

• Uniformity - all-JVM based for easy deployment and management



Traditional ETL



Data Integration Today



Data Pipelines today

http://ferd.ca/queues-don-t-fix-overload.html



Backpressure

 http://ferd.ca/queues-don-t-fix-overload.html



Data Hub / Stream Processing



Pipeline Architecture

Play App

Kafka
Spark 

Streaming

Spark 
core, streaming, 
graphx, mllib, ...

Cassandra

Spark 
Notebook

Web Client

Cold Data

Flink



Koober

github.com/jamesward/koober



Kafka
Distributed Commit Logs



What is Kafka?

 Kafka is a distributed and partitioned commit log
 Replacement for traditional message queues and publish subscribe 

systems
 Central Data Backbone or Hub
 Designed to scale transparently with replication across the cluster



Core Principles

1. One pipeline to rule them all
2. Stream processing >> messaging
3. Clusters not servers
4. Pull Not Push



Kafka Characteristics

 Scalability of a filesystem
• Hundreds of MB/sec/server throughput
• Many TB per server

 Durable - Guarantees of a database
• Messages strictly ordered
• All data persistent

 Distributed by default
• Replication
• Partitioning model



Kafka is about logs



The Event Log

 Append-Only Logging

 Database of Facts

 Disks are Cheap

 Why Delete Data any more?

 Replay Events



Append Only Logging



Logs: pub/sub done right



Kafka Overview
• Producers write data to brokers.

• Consumers read data from brokers.

• Brokers - Each server running Kafka is called a 
broker.  

• All this is distributed.

• Data

– Data is stored in topics.

– Topics are split into partitions, which are 
replicated.

• Built in Parallelism and Scale



http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/



Partitions

 A topic consists of partitions.
 Partition:  ordered + immutable sequence of messages 

that is continually appended to



Partition offsets

• Offset:  messages in the partitions are each assigned a unique 
(per partition) and sequential id called the offset
• Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1



Example: 
A Fault-tolerant CEO Hash Table



Operations
Final State



Kafka Log



Heroku Kafka

• Managed Kafka Cloud Service
• https://www.heroku.com/kafka



Code



Akka Streams
Reactive Streams Built on Akka



Reactive Streams
A JVM standard for asynchronous stream processing with non-blocking back pressure



Akka Streams

• Powered by Akka Actors

• Impl of Reactive Streams

• Actors can be used directly or just internally

• Stream processing functions: map, filter, fold, etc



Sink & Source

val source = Source.repeat("hello, world")
val sink = Sink.foreach(println)
val flow = source to sink
flow.run()



Code



Play Framework
Web Framework Built on Akka Streams 



Play Framework

Declarative Routing:

GET  /foo  controllers.Foo.do

Controllers Hold Stateless Functions:

class Foo {

 def do() = Action {

 Ok("hello, world")

 }

}

Scala & Java – Built on Akka Streams



Reactive Requests

def doLater = Action.async {

 Promise.timeout(Ok("hello, world"), 5.seconds)

}

def reactiveRest = Action.async {

ws.url("http://api.foo.com/bar").get().map { response =>

Ok(response.json)

}

}

Don't block in wait states!



WebSockets

def ws = WebSocket.accept { request =>

 val sink = ...

 val source = ...

 Flow.fromSinkAndSource(Sink.ignore, source)

}

Built on Akka Streams



Views

app/views/blah.scala.html

@(foo: String)

<html>

<body>

 @foo

</body>

</html>

Action {

 Ok(views.html.blah("bar"))

}

<html>

<body>

 bar

</body>

</html>

Serverside Templating with a Subset of Scala



Demo & Code



Flink
Real-time Data Analytics



Flink

• Bounded & Unbounded Data Sets

• Stream processing

• Distributed Core
• Fault Tolerant

• Clustered

• Flexible Windowing

Real-time Data Analytics



Apache Flink
Continuous Processing for Unbounded Datasets

λ

count() 5



Windowing
Bounding with Time, Count, Session, or Data

λ

count() 21s 1s 3



Batch Processing
Stream Processing on Finite Streams

λ

count() 4



Data Processing

• Aggregate / Accumulate

• Transform

• Filter

• Sort

fold(), reduce(), sum(), min()

map(), flatMap()

filter(), distinct()

sortGroup(), sortPartition()

What can we do?

λ



Apache Flink
Architecture



Partitioning
Network Distribution



Demo & Code



Cassandra
Distributed NoSQL Database



Challenges with Relational Databases

• How do you scale and maintain high-availability with a 
monolithic database?

• Is it possible to have ACID compliant distributed transactions?
• How can I synchronize a distributed data store?
• How do I resolve differing views of data?







56



Goals of a Distributed Database
• Consistency is not practical - give it up!
• Manual sharding & rebalancing is hard - Automatic 

Sharding!
• Every moving part makes systems more complex 
• Master / slave creates a Single Point of Failure / Bottleneck  

- Simplify Architecture!
• Scaling up is expensive - Reduce Cost
• Leverage cloud / commodity hardware



Confidential

What is Cassandra? 

Distributed Database

✓ Individual DBs (nodes)

✓ Working in a cluster

✓ Nothing is shared

C*



Confidential

Cassandra Cluster

• Nodes in a peer-to-peer cluster
• No single point of failure

• Built in data replication
• Data is always available
• 100% Uptime

• Across data centers
• Failure avoidance  



Multi-Data Center Design



Confidential

Why Cassandra?
It has a flexible data model
Tables, wide rows, partitioned and distributed
✓ Data
✓ Blobs (documents, files, images)
✓ Collections (Sets, Lists, Maps)
✓ UDTs
Access it with CQL  ←  familiar syntax to SQL



Two knobs control Cassandra fault tolerance

How many copies of the data should exist?

Replication Factor (server side)

Client

B
AD

C
AB

A
CD

D
BC

Write	A

RF=3



Two knobs control Cassandra fault tolerance
Consistency Level (client side)

Client

B
AD

C
AB

A
CD

D
BC

Write	A

CL=QUORUM

Client

B
AD

C
AB

A
CD

D
BC

Write	A

CL=ONE

How many replicas do we need to hear from before we acknowledge?



Consistency Levels

ONE – one replica from any DC

LOCAL_ONE – one replica from local DC

QUORUM – 51% of replicas from any DC

LOCAL_QUORUM – 51% of replicas from local DC

ALL – all replicas

TWO

Applies to both Reads and Writes (i.e. is set on each query)



How many replicas we need to hear from can affect 
how quickly we can read and write data in 
Cassandra?

Consistency Level and Speed

Client

B
AD

C
AB

A
CD

D
BC

5 µs ack

300 µs ack

12 µs ack
12 µs ack

Read	A
(CL=QUORUM)



Consistency Level choice affects availability
Consistency Level and Availability

Client

B
AD

C
AB

A
CD

D
BC

A=2

A=2

A=2

Read	A
(CL=QUORUM)

For example, QUORUM can tolerate one replica being down 
and still be available (in RF=3)



Reads in the cluster
Same as writes in the cluster, reads are coordinated
Any node can be the Coordinator Node

Client

B
AD

C
AB

A
CD

D
BC

Read	A
(CL=QUORUM)

Coordinator	Node



Spark Cassandra Connector 



Spark Cassandra Connector 

 Data locality-aware (speed)

 Read from and Write to Cassandra

 Cassandra Tables Exposed as RDD and DataFrames

 Server-Side filters (where clauses)

 Cross-table operations (JOIN, UNION, etc.) 

 Mapping of Java Types to Cassandra Types



●70



Code



Spark Streaming
Stream Processing Built on Spark



Hadoop?



Hadoop Limitations

• Master / Slave Architecture
• Every Processing Step requires Disk IO
• Difficult API and Programming Model
• Designed for batch-mode jobs 
• No even-streaming / real-time
• Complex Ecosystem



What is Spark?
 Fast and general compute engine for large-scale data processing

 Fault Tolerant Distributed Datasets

 Distributed Transformation on Datasets

 Integrated Batch, Iterative and Streaming Analysis

 In Memory Storage with Spill-over to Disk



Advantages of Spark
• Improves efficiency through:
• In-memory data sharing
• General computation graphs - Lazy Evaluates Data
• 10x faster on disk, 100x faster in memory than Hadoop MR

• Improves usability through:
• Rich APIs in Java, Scala, Py..??
• 2 to 5x less code
• Interactive shell 





Application
(Spark Driver)

Spark Master

Worker

Spark Components

You application code 
which creates the SparkContext

A process which shells out to create
a Executor JVM

A Process which Manages the 
Resources of the Spark Cluster

These processes are all separate and require networking
to communicate

Hosting 
Application UI

:4040

Hosting 
Spark Master UI

:7080

WorkerWorkerWorkerWorker



Resilient Distributed Datasets (RDD)

• The primary abstraction in Spark 
• Collection of data stored in the Spark Cluster
• Fault-tolerant
• Enables parallel processing on data sets
• In-Memory or On-Disk



RDD Operations
Transformations - Similar to scala collections API 
Produce new RDDs:
filter, flatmap, map, distinct, groupBy,
union, zip, reduceByKey, subtract

Actions - Require materialization of the records to generate a value
collect: Array[T], count, fold, reduce.. 



DataFrame
• Distributed collection of data

• Similar to a Table in a RDBMS

• Common API for reading/writing data 

• API for selecting, filtering, aggregating 
and plotting structured data 



DataFrame Part 2
• Sources such as Cassandra, structured data files, tables in 

Hive, external databases, or existing RDDs.

• Optimization and code generation through the Spark SQL 
Catalyst optimizer

• Decorator around RDD - Previously SchemaRDD 



Spark Versus Spark Streaming



Spark Streaming Data Sources



Spark Streaming General Architecture



DStream Micro Batches



Windowing



Windowing



Streaming Resiliency without Kafka

• Streaming uses aggressive checkpointing and in-memory data replication to improve 

resiliency.  

• Frequent checkpointing keeps RDD lineages down to a reasonable size.

• Checkpointing and replication mandatory since streams don’t have source data files to 

reconstruct lost RDD partitions (except for the directory ingest case).

• Write Ahead Logging to prevent Data Loss



Direct Kafka Streaming w/ Kafka Direct API

• Use Kafka Direct Approach (No Receivers)

• Queries Kafka Directly 

• Automatically Parallelizes based on Kafka Partitions

• (Mostly) Exactly Once Processing - Only Move Offset after 

Processing 

• Resiliency without copying data



Demo & Code


