
MISSION TO MARS:
 EXPLORING NEW WORLDS

 WITH AWS IOT

Jeroen Resoort
@JeroenResoort @jdriven_nl

Jeroen Resoort

JDriven

About me

Learn new things

About this talk
● Robot

○ Hardware
○ Software

● AWS IoT platform
● Demo
● AWS IoT rules engine examples

Inspiration?

Pathfinder mission
Pathfinder landed in 1997

Sojourner Rover explored the surface
of Mars for 3 months

Several other missions followed

Our own robot
What do we want it to do?

Our own robot
What do we want it to do?

● Move around
● Take pictures
● Gather data

Our own robot
What does our robot need?

Our own robot
What does our robot need?

● Power supply
● Connectivity (internet)
● Camera
● Sensors

Our own robot
A lot of robots available

KickStarter project called ‘mBot’

Funded within 24 hours

Meet mBot

mBot features
● Easy to build
● Based on arduino
● Comes with Bluetooth or 2.4GHz, infrared remote control, light sensor, leds,

buttons, buzzer, line follower, ultrasonic
● Powered by AA batteries or 3.7V lithium battery

mBot features

mBot @ devoxx4kids

mBot only is not enough
We also need

● Connectivity
● Camera
● More processing power

What about an ESP8266?
Microcontroller and WiFi

Cool and cheap… but... 96 KiB of data RAM

Raspberry Pi
Pi 3 has built in WiFi

Camera interface

Way more powerful

Easy to extend through
GPIO header

UPS Pico
Power supply board

Runs for hours on
3000mAh battery

GrovePi
Plug-n-play

Lots of sensors
available

Pi Camera
Easy to connect

Pi-Pan
Camera mount

Panning and Tilting

Comes with servo
controller board

Putting it all together
UPS-Pico, GrovePi and Pi-Pan controller stackable on Pi headers

Communication over i2c

Putting it all together
Raspberry Pi connects to mBot through USB

Mbot is powered through USB

USB Serial communication with mBot

Putting it all together
But Raspberry Pi does not fit on mBot...

Putting it all together
Meet MarsBot

And now we need
some software

Software: Python all the way
You can find a python library for everything :-)

We need to program our Pi to communicate with

● Camera
● PiPan
● GrovePi
● mBot

Software: Controlling the camera
import picamera

Software: Controlling the camera
import picamera

camera = picamera.PiCamera()
camera.hflip = True
camera.vflip = True
camera.resolution = (800, 600)

Software: Controlling the camera
import picamera

camera = picamera.PiCamera()
camera.hflip = True
camera.vflip = True
camera.resolution = (800, 600)

camera.capture('marsbot-camera.jpg')

Software: Controlling the Pi-Pan
import pipan

Software: Controlling the Pi-Pan
import pipan

pan = pipan.PiPan()

Software: Controlling the Pi-Pan
import pipan

pan = pipan.PiPan()

pan.neutral_pan()
pan.neutral_tilt()

Software: Controlling the Pi-Pan
import pipan

pan = pipan.PiPan()

pan.neutral_pan()
pan.neutral_tilt()

pan.do_pan(120)
pan.do_tilt(170)

Software: Getting data from temperature sensor
from grovepi import *

Software: Getting data from temperature sensor
from grovepi import *

dht_sensor_port = 7 # Connect the DHt sensor to port 7

Software: Getting data from temperature sensor
from grovepi import *

dht_sensor_port = 7 # Connect the DHt sensor to port 7

while True:
try:

[temp,hum] = dht(dht_sensor_port, 0)
print "temp =", temp, "C\thumidity =", hum,"%"

Software: Getting data from compas sensor
Oops…

Software: Controlling the mBot
Sending commands over serial connection

Software: Controlling the mBot
import serial
import binascii
import time

Software: Controlling the mBot
import serial
import binascii
import time

ser = serial.Serial('/dev/ttyUSB0', 115200)

Software: Controlling the mBot
import serial
import binascii
import time

ser = serial.Serial('/dev/ttyUSB0', 115200)

motor1_on = binascii.unhexlify('ff550600020a0981ff') # half speed forward
motor1_off = binascii.unhexlify('ff550600020a090100')
motor1_rev = binascii.unhexlify('ff550600020a097f00') # half speed reverse
motor2_on = binascii.unhexlify('ff550600020a0a7f00')
motor2_off = binascii.unhexlify('ff550600020a0a0000')
motor2_rev = binascii.unhexlify('ff550600020a0a81ff')

Software: Controlling the mBot
ser.write(motor1_on)
ser.write(motor2_on)
time.sleep(1)
ser.write(motor1_off)
ser.write(motor2_off)

Now we have
● a robot
● software running on the robot

But we need more...

Mission Control
Foto nasa

Amazon Web Services
One of the biggest cloud services providers

Huge number of cloud services

Available around the globe

AWS IoT as a messaging platform for your IoT
devices

Connect AWS IoT to other Amazon services

AWS IoT
Secure communication with your devices

Messaging based on MQTT

Rules engine for routing and transforming messages, and connecting to other
Amazon services

Device Shadow for persisting state and keeping it available when your device is
offline

Connecting MarsBot to AWS IoT

 AWS IoT

Connecting MarsBot to AWS IoT

 AWS IoT

Software: Setting up a connection with AWS IoT
Using Eclipse paho

https://eclipse.org/paho/

Software: Setting up a connection with AWS IoT
import paho.mqtt.client as paho
import os
import socket
import ssl

Software: Setting up a connection with AWS IoT
awshost = "A2BKF6WMC3MQMP.iot.eu-west-1.amazonaws.com"
awsport = 8883
clientId = "marsbot"
thingName = "marsbot"
caPath = "aws-iot-rootCA.crt"
certPath = "cert.pem"
keyPath = "privkey.pem"

Software: Setting up a connection with AWS IoT
awshost = "A2BKF6WMC3MQMP.iot.eu-west-1.amazonaws.com"
awsport = 8883
clientId = "marsbot"
thingName = "marsbot"
caPath = "aws-iot-rootCA.crt"
certPath = "cert.pem"
keyPath = "privkey.pem"

mqttc = paho.Client()
mqttc.tls_set(caPath, certfile=certPath, keyfile=keyPath, cert_reqs=ssl.CERT_REQUIRED,
tls_version=ssl.PROTOCOL_TLSv1_2, ciphers=None)
mqttc.connect(awshost, awsport, keepalive=60)

Software: Subscribing to an MQTT topic
mqttc.on_connect = on_connect
mqttc.on_message = on_message
mqttc.loop_forever()

Software: Subscribing to an MQTT topic
mqttc.on_connect = on_connect
mqttc.on_message = on_message
mqttc.loop_forever()

def on_connect(client, userdata, flags, rc):
 print("Connection returned result: " + str(rc))
 # Subscribing in on_connect() means that if we lose the connection and
 # reconnect then subscriptions will be renewed.
 client.subscribe("#" , 1)

Software: Responding to messages
def on_message(client, userdata, msg):
 topic = str(msg.topic);
 command = str(msg.payload);
 print("topic: "+topic)
 print("payload: "+command)
 if topic == 'marsbot/mbot':
 if command == 'fwd':
 print("moving forward")
 forward()
 elif command == 'left':
 ...

Software: Publishing data to an MQTT topic
mqttc.publish('topic', payload=mydata, qos=0, retain=False)

Connecting your web client to AWS IoT

 AWS IoT

Connecting your web client to AWS IoT
Sending and receive MQTT messages

Using Eclipse Paho javascript client

Using Websockets

Javascript
Very similar to the python client...

Sending Pictures to AWS

 AWS IoT

AWS S3

Software: Sharing an image on S3
import boto3
import uuid

Software: Sharing an image on S3
import boto3
import uuid

camera.capture('marsbot-camera.jpg')
bucket_name = 'marsbot-bucket'
object_key = 'marsbot-camera-{}.jpg'.format(uuid.uuid4())
s3 = boto3.resource('s3')
s3.Bucket(bucket_name).upload_file('marsbot-camera.jpg', object_key)
url = s3client.generate_presigned_url('get_object', {'Bucket': bucket_name, 'Key': object_key})
mqttc.publish('marsbot/camera/reply', payload=url, qos=0, retain=False)

Demo time!

Rules engine
SQL-like syntax for filtering messages
SELECT * FROM 'marsbot/sensor/temp' WHERE temp > 30

Connect to other services
cloudwatchAlarm to change a CloudWatch alarm.
cloudwatchMetric to capture a CloudWatch metric.
dynamoDB to write data to a DynamoDB database.
elasticsearch to write data to a Amazon Elasticsearch Service domain.
kinesis to write data to a Amazon Kinesis stream.
lambda to invoke a Lambda function.
s3 to write data to a Amazon S3 bucket.
sns to write data as a push notification.
firehose to write data to an Amazon Kinesis Firehose stream.
sqs to write data to an SQS queue.
republish to republish the message on another MQTT topic.

Rules engine example - Connecting to DynamoDB

 AWS IoT DynamoDB

Rules engine example - Connecting to DynamoDB
{
 "rule": {
 "ruleDisabled": false,
 "sql": "SELECT * AS message FROM 'marsbot/sensor/temp'",
 "description": "rule for dynamoDB",
 "actions": [{
 "dynamoDB": {
 "hashKeyField": "key",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_dynamoDB",
 "tableName": "my_ddb_table",
 "hashKeyValue": "${topic()}",
 "rangeKeyValue": "${timestamp()}",
 "rangeKeyField": "timestamp"
 }
 }]
 }
}

Rules engine example - Connecting to Lambda
Execute code directly on AWS infrastructure

No need to manage your own servers or environments

Java, Python, NodeJS

Rules engine example - Connecting to Lambda

 AWS IoT AWS Lambda

...

Rules engine example - Connecting to AWS SNS
Send small messages to:

● HTTP endpoints
● Mobile phone as SMS
● Email
● AWS Lambda

Rules engine example - Connecting to AWS SNS

 AWS IoT SNS

Recap
Robots are cool :-)

mBot is a great platform to start with

A Raspberry Pi has all the capabilities you need

Writing Python code is easy, grabbing it from internet is even more easy

Recap
Amazon's IoT platform enables you to get started with IoT without running your
own server

MQTT is a lightweight messaging framework, ideal for IoT applications

Using the rules engine, you can easily connect to other Amazon services

Finally
Twitter: @JeroenResoort

Blog: http://blog.jdriven.com/author/jeroen-resoort/

See my blog post for useful links and a shopping list
http://blog.jdriven.com/2016/04/mission-mars/

http://blog.jdriven.com/author/jeroen-resoort/
http://blog.jdriven.com/2016/04/mission-mars/
http://blog.jdriven.com/2016/04/mission-mars/

Questions?

MISSION TO MARS:
 EXPLORING NEW WORLDS

 WITH AWS IOT

Jeroen Resoort
@JeroenResoort @jdriven_nl

