
Type Theory 101

Type Theory For Absolute beginners
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Hi! I'm Hanneli (@hannelita)
Computer Engineer
Programming
Electronics
Math <3 <3
Physics
Lego
Meetups
Animals
Coffee
Pokémon
GIFs

#confoo  - @hannelita
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Why 'Type Theory?'

Frameworks and architecture are important topics
But what are the boundaries of computer science?
We need theory to improve our practical tools.
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Why 'Type Theory?'

In , , and 
, a type theory is any of a class of

, some of which can serve
as alternatives to  as a

. In type
theory, every "term" has a "type" and
operations are restricted to terms of a
certain type.
Type theory is closely related to (and in
some cases overlaps with) .

mathematics logic computer
science
formal systems

set theory
foundation for all mathematics

type systems

https://en.wikipedia.org/wiki/Type_theory
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https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Foundations_of_mathematics
https://en.wikipedia.org/wiki/Type_system


Why 'Type Theory?'
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Disclaimer

GIFs :)

Quick session

Lots of theory
And mathematics

No advanced Type Theory
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Goals
Understand what type theory is about

Understand how can we jump from
language analysis to mathematics (it is not

magic)

Understand some benefits of this analysis
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Agenda
Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges
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How do you choose
a programming

language?
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By company
By popularity
By team
By deadline to deliver a project
By project goal
By available tools
That was the only language I learned at school
Somebody told me I should use that
I really don't know
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How often do you consider
the following items when

choosing a language?

Type System
Immutability
Avoidance to runtime errors
Paradigm
Verbosity
Memory management
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Wait - what is a type
system? 

Let's ask Wikipedia:

"In , a type
 system is a collection of rules 
that assign a property called 

 to various constructs a 
 consists of, such

 as , , 
 or "

programming languages

type
computer program

variables expressions functions
modules
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https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Type_(computer_science)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Variable_(computer_science)
https://en.wikipedia.org/wiki/Expression_(computer_science)
https://en.wikipedia.org/wiki/Function_(computer_science)
https://en.wikipedia.org/wiki/Modular_programming


Agenda
Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges
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Wait - what is a type
system? 
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In all languages, even in Assembly, we
have at least two components:

Data Operations

Not all of the available operations make
sense to all kinds of data.
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If you use incompatible
pieces of data for an

operation, you will have a
representation error
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Programming languages
use a type system to look

at a program and
determine if a

representation error will
happen or not
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What are the possible
strategies that a type

system can use to handle
representation errors?
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Strategies

A compiler
tags pieces of
code and tries
to infer if the
behaviour will
be valid or not
(before the
program runs)

A compiler
/
interpreter
generates
code to
keep track
of the data

Generate a
compile error
Perform a
type check
before run
the code
Well defined
error set

Unpredictable
 runtime
errors
Try implicit
conversion
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Strategies

A compiler
tags pieces of
code and tries
to infer if the
behaviour will
be valid or not
(before the
program runs)

A compiler
/
interpreter
generates
code to
keep track
of the data

Generate a
compile error
Perform a
type check
before run
the code
Well defined
error set

Unpredictable
 runtime
errors
Try implicit
conversion

"Strong" "Weak" "Static" "Dynamic"

* Definitions are not exact on literature
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You don't have to choose
only one alternative

Java: static (why?) 
Python: dynamic
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But how can we perform the 'type
check' mentioned before? 

Have you ever heard someone saying "Language X has a
terrible type system, it is a total mess!" Why? What does

it even mean? How can we prove that?
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We need some
Mathematics
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The steps to Type
Theory
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Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges
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#1:
Given a language, collect all
the keywords and analyse
the grammar for each of
these works individually. 
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#1 - Example in Java:

extends        ==> extends ClassType
implements ==> implements InterfaceTypeList
throws          ==> throws ClassTypeList
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#2
Make it look like

Mathematics - replace text
with variables :)
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#2 - Example in
Java:

extends        ==> extends ClassType
implements ==> implements InterfaceTypeList
throws          ==> throws ClassTypeList

A        ==> ClassType
B        ==> InterfaceType(List)
C        ==> ClassType(List)
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#2 - Example in
Java:

 ζ       ==> ClassType

(people like letters from the greek
alphabet)
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#3
Group these results in sets

and remove duplicates.
These sets will reveal the

types. 
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A very difficult task in
science is grouping topics

appropriately.
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Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges
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#4
Use symbolic logic to
simplify your system
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#4 - Example in Java

http://www.jot.fm/issues/issue_2007_09/article3.pdf

( ::= is the definition symbol)
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(Of course, you can
come up with a

different grouping)
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#4
Every program (in Java) has

its set of Classes and
Variables. We call it

Environment (Γ):
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#4
All mappings of a ClassType have a

ClassDeclaration in Java (the same for
interfaces). We will use the symbol m
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#4
Keep expanding the definitions:

http://www.jot.fm/issues/issue_2007_09/article3.pdf
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Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges
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#5
Use predicate logic to

analyse your system. Start
with true statements ('well-

formed'):
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#5 - Example in Java
validType = true

validType (primitive) = true validType (π) = true

validType (environment,
primitive) = true

validType (Γ, π) = true

validClass(Type) = ClassMap of the
environment for that type validClass(τ) = Γ classMap(τ) 

validType(Class) =
validClass(Type)

validType(ζ) = validClass(ζ)
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#6 - Breathe
Free GIF! 
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#6 - Lambda
Calculus

Understanding lambda calculus (out of
scope of this presentation) will help you

come out with these relations.
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#6 - Bonus - Lambda
Calculus

Lambda Calculus is about formal function
theory. We can apply them to functional

programming. We can also apply the ideas
to general functions in programming.

http://www.cs.le.ac.uk/people/amurawski/mgs2011-tlc.pdf
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#6 Lambda Calculus
With Lambda Calculus we can define a

Type itself

"A type is a collection of objects having
similar structure"

http://www.nuprl.org/book/Introduction_Type_Theory.html
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#6 Lambda Calculus
Functions can transform data

public Integer nextInt(Integer number) { ... }

A: Integer

A → A

1 . 48



#6 Lambda Calculus
Functions can transform data

public Integer nextInt(Integer number) { ... }

function: λx.x+1

That looks like mathematics!
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#6 Lambda Calculus
λx.x+1 is in (A → A)

Lamba Calculus help us to build these
statements, highly connected to predicate

logic
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#7 - Write some
statements that you

can prove:
"In Java, every class type that you define

will be a subclass of a class"
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#7 - Sketch a
mathematical

expression:
class => ζ

environment => Γ

class relation
(subclass or class itself) => 
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#7 - Sketch a
mathematical

expression:
In an environment Γ,

Γ

we can prove

⊢

that a class of a

certain type

ζ1 ζ2

is a subclass of another type

or the other type itself (Object)

1 . 53



Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges
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#8 - We can almost
read this:
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#8:

A valid class. A class type

that is a subclass of another

type

The super class of a type.

But the super class also is a

subclass of another type
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#8:

A valid class. A class type

that is a subclass of another

type

The super class of a type.

But the super class also is a

subclass of another type
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#8:

Γ

General subclass chain

⊢

A subclass or the class itself

ζ1 ζ2

1 . 58



#8:

Γ

Valid type!

validType(Γ, ζ)

⊢ ζ1 ζ2
True!
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Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges
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Why is this so
important?

Reduce runtime errors by checking the
types
IDEs can perform a better analysis of
your code based on logical statements
Different languages have different type
systems
You have a solid point to choose a
language
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Sometimes it is
difficult to find an

equivalent type
across different

languages
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Collect the characteristics
that are important for you
and compare them across
the languages using the

ideas of type theory 
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Examples:
Is everything immutable here? (prove it)
Is everything an object in language X? (prove it!)
Do I have co-variance? (related to subtyping)
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Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges

1 . 65



Challenges

There is no single way to describe a type system
It is hard to find equivalences between languages
It is a lot of mathematics!
We have lots of theory and very few time to study
them
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Challenges

http://www.jot.fm/issues/issue_2007_09/article3.pdf

http://www.dsi.unive.it/myths/GC2004/Slides/Zucca_slides.pdf

http://groups.csail.mit.edu/pag/pubs/ref-immutability-oopsla2004-abstract.html

http://pubs.doc.ic.ac.uk/JavaProbablySound/JavaProbablySound.pdf

Java type system - proposed type representations:
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Final notes

Don't be scared of mathematics - the concepts, itself, are not
so difficult!

There are several active researched focusing on Type Theory!

Even if you don't have a PhD, you can learn
and use type theory concepts!
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Type Theory

Most type theory studies are applied to functional languages.

But you can analyse languages that are not purely funcional
as well. 
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Thank you :)
Questions?
 
hannelita@gmail.com
@hannelita
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