
Type Theory 101

Type Theory For Absolute beginners

1 . 1

Hi! I'm Hanneli (@hannelita)
Computer Engineer
Programming
Electronics
Math <3 <3
Physics
Lego
Meetups
Animals
Coffee
Pokémon
GIFs

#confoo - @hannelita
1 . 2

Why 'Type Theory?'

Frameworks and architecture are important topics
But what are the boundaries of computer science?
We need theory to improve our practical tools.

1 . 3

Why 'Type Theory?'

In , , and
, a type theory is any of a class of

, some of which can serve
as alternatives to as a

. In type
theory, every "term" has a "type" and
operations are restricted to terms of a
certain type.
Type theory is closely related to (and in
some cases overlaps with) .

mathematics logic computer
science
formal systems

set theory
foundation for all mathematics

type systems

https://en.wikipedia.org/wiki/Type_theory

1 . 4

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Foundations_of_mathematics
https://en.wikipedia.org/wiki/Type_system

Why 'Type Theory?'

1 . 5

Disclaimer

GIFs :)

Quick session

Lots of theory
And mathematics

No advanced Type Theory

1 . 6

Goals
Understand what type theory is about

Understand how can we jump from
language analysis to mathematics (it is not

magic)

Understand some benefits of this analysis

1 . 7

Agenda
Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges

1 . 8

How do you choose
a programming

language?

1 . 9

By company
By popularity
By team
By deadline to deliver a project
By project goal
By available tools
That was the only language I learned at school
Somebody told me I should use that
I really don't know

1 . 10

How often do you consider
the following items when

choosing a language?

Type System
Immutability
Avoidance to runtime errors
Paradigm
Verbosity
Memory management

1 . 11

Wait - what is a type
system?

Let's ask Wikipedia:

"In , a type
 system is a collection of rules
that assign a property called

 to various constructs a
 consists of, such

 as , ,
 or "

programming languages

type
computer program

variables expressions functions
modules

1 . 12

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Type_(computer_science)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Variable_(computer_science)
https://en.wikipedia.org/wiki/Expression_(computer_science)
https://en.wikipedia.org/wiki/Function_(computer_science)
https://en.wikipedia.org/wiki/Modular_programming

Agenda
Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges

1 . 13

Wait - what is a type
system?

1 . 14

In all languages, even in Assembly, we
have at least two components:

Data Operations

Not all of the available operations make
sense to all kinds of data.

1 . 15

If you use incompatible
pieces of data for an

operation, you will have a
representation error

1 . 16

Programming languages
use a type system to look

at a program and
determine if a

representation error will
happen or not

1 . 17

What are the possible
strategies that a type

system can use to handle
representation errors?

1 . 18

Strategies

A compiler
tags pieces of
code and tries
to infer if the
behaviour will
be valid or not
(before the
program runs)

A compiler
/
interpreter
generates
code to
keep track
of the data

Generate a
compile error
Perform a
type check
before run
the code
Well defined
error set

Unpredictable
 runtime
errors
Try implicit
conversion

1 . 19

Strategies

A compiler
tags pieces of
code and tries
to infer if the
behaviour will
be valid or not
(before the
program runs)

A compiler
/
interpreter
generates
code to
keep track
of the data

Generate a
compile error
Perform a
type check
before run
the code
Well defined
error set

Unpredictable
 runtime
errors
Try implicit
conversion

"Strong" "Weak" "Static" "Dynamic"

* Definitions are not exact on literature
1 . 20

You don't have to choose
only one alternative

Java: static (why?)
Python: dynamic

1 . 21

But how can we perform the 'type
check' mentioned before?

Have you ever heard someone saying "Language X has a
terrible type system, it is a total mess!" Why? What does

it even mean? How can we prove that?

1 . 22

We need some
Mathematics

1 . 23

The steps to Type
Theory

1 . 24

1 . 25

Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges

1 . 26

#1:
Given a language, collect all
the keywords and analyse
the grammar for each of
these works individually.

1 . 27

#1 - Example in Java:

extends ==> extends ClassType
implements ==> implements InterfaceTypeList
throws ==> throws ClassTypeList

1 . 28

#2
Make it look like

Mathematics - replace text
with variables :)

1 . 29

#2 - Example in
Java:

extends ==> extends ClassType
implements ==> implements InterfaceTypeList
throws ==> throws ClassTypeList

A ==> ClassType
B ==> InterfaceType(List)
C ==> ClassType(List)

1 . 30

#2 - Example in
Java:

 ζ ==> ClassType

(people like letters from the greek
alphabet)

1 . 31

#3
Group these results in sets

and remove duplicates.
These sets will reveal the

types.

1 . 32

A very difficult task in
science is grouping topics

appropriately.

1 . 33

Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges

1 . 34

#4
Use symbolic logic to
simplify your system

1 . 35

#4 - Example in Java

http://www.jot.fm/issues/issue_2007_09/article3.pdf

(::= is the definition symbol)

1 . 36

(Of course, you can
come up with a

different grouping)

1 . 37

#4
Every program (in Java) has

its set of Classes and
Variables. We call it

Environment (Γ):

1 . 38

#4
All mappings of a ClassType have a

ClassDeclaration in Java (the same for
interfaces). We will use the symbol m

1 . 39

#4
Keep expanding the definitions:

http://www.jot.fm/issues/issue_2007_09/article3.pdf
1 . 40

Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges

1 . 41

#5
Use predicate logic to

analyse your system. Start
with true statements ('well-

formed'):

1 . 42

#5 - Example in Java
validType = true

validType (primitive) = true validType (π) = true

validType (environment,
primitive) = true

validType (Γ, π) = true

validClass(Type) = ClassMap of the
environment for that type validClass(τ) = Γ classMap(τ)

validType(Class) =
validClass(Type)

validType(ζ) = validClass(ζ)

1 . 43

#6 - Breathe
Free GIF!

1 . 44

#6 - Lambda
Calculus

Understanding lambda calculus (out of
scope of this presentation) will help you

come out with these relations.

1 . 45

#6 - Bonus - Lambda
Calculus

Lambda Calculus is about formal function
theory. We can apply them to functional

programming. We can also apply the ideas
to general functions in programming.

http://www.cs.le.ac.uk/people/amurawski/mgs2011-tlc.pdf

1 . 46

#6 Lambda Calculus
With Lambda Calculus we can define a

Type itself

"A type is a collection of objects having
similar structure"

http://www.nuprl.org/book/Introduction_Type_Theory.html

1 . 47

#6 Lambda Calculus
Functions can transform data

public Integer nextInt(Integer number) { ... }

A: Integer

A → A

1 . 48

#6 Lambda Calculus
Functions can transform data

public Integer nextInt(Integer number) { ... }

function: λx.x+1

That looks like mathematics!

1 . 49

#6 Lambda Calculus
λx.x+1 is in (A → A)

Lamba Calculus help us to build these
statements, highly connected to predicate

logic

1 . 50

#7 - Write some
statements that you

can prove:
"In Java, every class type that you define

will be a subclass of a class"

1 . 51

#7 - Sketch a
mathematical

expression:
class => ζ

environment => Γ

class relation
(subclass or class itself) =>

1 . 52

#7 - Sketch a
mathematical

expression:
In an environment Γ,

Γ

we can prove

⊢

that a class of a

certain type

ζ1 ζ2

is a subclass of another type

or the other type itself (Object)

1 . 53

Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges

1 . 54

#8 - We can almost
read this:

1 . 55

#8:

A valid class. A class type

that is a subclass of another

type

The super class of a type.

But the super class also is a

subclass of another type

1 . 56

#8:

A valid class. A class type

that is a subclass of another

type

The super class of a type.

But the super class also is a

subclass of another type

1 . 57

#8:

Γ

General subclass chain

⊢

A subclass or the class itself

ζ1 ζ2

1 . 58

#8:

Γ

Valid type!

validType(Γ, ζ)

⊢ ζ1 ζ2
True!

1 . 59

Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges

1 . 60

Why is this so
important?

Reduce runtime errors by checking the
types
IDEs can perform a better analysis of
your code based on logical statements
Different languages have different type
systems
You have a solid point to choose a
language

1 . 61

Sometimes it is
difficult to find an

equivalent type
across different

languages

1 . 62

Collect the characteristics
that are important for you
and compare them across
the languages using the

ideas of type theory

1 . 63

Examples:
Is everything immutable here? (prove it)
Is everything an object in language X? (prove it!)
Do I have co-variance? (related to subtyping)

1 . 64

Agenda

Choosing a programming language
Quick intro about type systems
Sketching the possible types
Symbolic Logic analysis
Predicate logic
Getting there!
Why is this important?
Challenges

1 . 65

Challenges

There is no single way to describe a type system
It is hard to find equivalences between languages
It is a lot of mathematics!
We have lots of theory and very few time to study
them

1 . 66

Challenges

http://www.jot.fm/issues/issue_2007_09/article3.pdf

http://www.dsi.unive.it/myths/GC2004/Slides/Zucca_slides.pdf

http://groups.csail.mit.edu/pag/pubs/ref-immutability-oopsla2004-abstract.html

http://pubs.doc.ic.ac.uk/JavaProbablySound/JavaProbablySound.pdf

Java type system - proposed type representations:

1 . 67

Final notes

Don't be scared of mathematics - the concepts, itself, are not
so difficult!

There are several active researched focusing on Type Theory!

Even if you don't have a PhD, you can learn
and use type theory concepts!

1 . 68

Type Theory

Most type theory studies are applied to functional languages.

But you can analyse languages that are not purely funcional
as well.

1 . 69

References
http://blogs.atlassian.com/2013/01/covariance-and-contravariance-in-scala/

http://cseweb.ucsd.edu/~atl017/papers/pldi11.pdf

STEPANOV, A. Elements of Programming.

PIERCE, B. Types and Programming Languages

THOMPSON, S. Type Theory and Functional Programming (free ebook!)

MICHAELSON, G. An Introduction to Functional Programming Through Lambda

Calculus.

Session at Open Source Bridge 2016
http://slides.com/hannelitavante-hannelita/type-theory-101-35#/

Session at Devoxx Belgium 2016
http://slides.com/hannelitavante-hannelita/devoxx-be-notes-type-theory#/

1 . 70

Special Thanks

B.C., for the constant review and support
Professor M. Coutinho (UNIFEI)
JFokus Team

1 . 71

Thank you :)
Questions?

hannelita@gmail.com
@hannelita

1 . 72

