

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

To	Serve	Odin
Adventures	in	Project	Valhalla	Prototyping

David	Simms
 Consulting	Member	Technical	Staff	
Java	Platform	Group
February,	2017

Image:	W.G.	Collingwood (public	domain)

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.

3

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Project	Valhalla
Generic	Specialization	and	Value	Types

Image:	David	Simms	(All	rights	reserved)

4

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Introduction

• Project	Page:	http://openjdk.java.net/projects/valhalla/
– Links	to	mailing	lists,	repository(s),	OpenJDK	Wiki,	Presentations	etc...

• Brian	Goetz:	”Adventures	in	Parametric	Polymorphism”	– JVMLS,	Aug	2016
– https://www.youtube.com/watch?v=Tc9vs_HFHVo
– http://www.oracle.com/technetwork/java/jvmls2016-goetz-3126134.pdf

5

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Project	Goals

• Align	JVM	memory	layout	behavior	with	the	cost	model	of	modern	
hardware

• Extend	generics	to	allow	abstraction	over	all	types,	including	primitives,	
values,	and	even	void

• Enable	existing	libraries	especially	the	JDK	to	compatibly	evolve	to	fully	
take	advantage	of	these	features

Why…Three	major	goals

6

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

“Valhalla	may	be	motivated	by	
performance	considerations,	but	a	
better	way	to	view	it	as	enhancing	
abstraction,	encapsulation,	safety,	
expressiveness,	and	maintainability	
without giving	up	performance.”

– Brian	Goetz,	Java	Language	Architect
– http://mail.openjdk.java.net/pipermail/valhalla-spec-experts/

7

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

A	War	on	Two	Main	Fronts

• Generic	Specialization
– Just		say	’no’	to	boxing:	”java.util.Map<long, U>”

• Value	Types
– Code	your	own	primitive	types,	”Codes	like	a	class,	works	like	an	int”
– Pure	data,	no	identity,	logically	seen	as	”pass	by	value”
– No	polymorphism
– Immutable
– Not	nullable

What…

8

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Generic	Specialization
Model	3	Implementation

Image:	David	Simms	(All	rights	reserved)

9

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Model	3

• Truth	is,	we	are	probably	up	to	”model	9”	at	this	point
– Always	end	up	back	at	”model	3+some-variant”	as	far	as	implementation	so	far...

• Q:	Why	is	this	so	hard	?	A:	Object	Model	still	not	done…
– “Foo<any U>”,	what	is	the	top	type,	when	“U=int”	?
– “Foo<int>, Foo<String>”	 are	these	“Foo”	?

• Common	super	type	would	be	?	”Any”	interface

–Migration	and	Compatibility
• Do	parameterized	types	need	to	box	primitives	when	dealing	with	existing	code	?

– Nasty	cases	keep	rearing	their	ugly	heads

…and	counting

10

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 11

public class Box<any T> {

T t;

public Box() {
}

public Box(T t) {
this.t = t;

}

T get() { return t; }

void set(T t) { this.t = t;}

}

Box	of	“Any”

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Current	Implementation

• Mostly	implemented	in	Java	with	the	JDK,	minor	Hotspot		VM	changes
• At	compile	time:	Javac	is	free	to	create	a	”template	class”	with	all	manor	of	
new	prototype	class	file	changes
– bytecodes,	constant	pool	forms,	etc
– Name	mangling	scheme:	“Foo<int>”	==	“Foo${I}”	for	“specialized	class”

• At	run	time:	class	load	hook	within	the	JVM	up-call	to	the	Model	3	
Specializer
– Responsible	for	converting	prototype	forms	into	”legal”	VM	class	file
– Dump	runtime	class	generation:	“-Dvalhalla.dumpProxyClasses=<dir>”

Model	3	Specializer

12

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Realizing	Parameterized	Types

• Transforming	bytecode	to	accommodate	all	types,	is	too	hard
– Consider	primitive	types,	value	types	and	objects,	bytecode	syntax	differs	for	each	
family.	

– E.g.	“anewarray”	vs “newarray”,	“if_acmpeq”	vs “dcmp…if”

• Introduced	parameterization	to	the	constant	pool	and	specialize	the	pool
– New	to	the	constant	pool:	GenericClass,	ParameterizedType,	TypeVar,	etc…
– Consolidate	required	transforms	to	a	few	constant	pool	entries

• Instructions	operating	on	parameterized	types,	use	“generic	bytecode”	to	
be	specialized	later*

Constant	Pool	Specialization

13

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Realizing	Parameterized	Types

• ”typed”	bytecode
– “typed <TypeVarIndex>”

• Prefixes	“a”	bytecodes,	treating	those	as	wildcard	instructions
• Transformation	when	specializing	to	a	concrete	type

– Specializing	to	int:	“typed <TypeVar>; areturn”	è “nop; nop; nop; ireturn”
– Attempt	to	keep	the	shape	of	the	surrounding	bytecode,	preserve	local/stack	size

• *Actual	transformation	leave	some	part	to	the	VM:	=>	“typed I; areturn”
– VM	Experiment	with	multiple	dispatch	tables	switched	via	“typed”	bytecode

Generic	instructions

14

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 15

//class Box<any T>

#8 = TypeVar // T/Ljava/lang/Obj
#11 = TypeVar // T/_
#12 = ParameterizedType // LBox<T/_>
#13 = Class // "Box<T>"
#15 = NameAndType // t:T
#16 = Fieldref // "Box<T>".t:T
#24 = MethodDescriptor // (T/Ljava/lang/Ob
#29 = MethodDescriptor // ()T/Ljava/lang/O

LBox;:
Tvar Flags Bound
T [ANY] Ljava/lang/Object;

Box	of	“Any”	versus	Box	of	int,	Constant	Pool
//class Box<int>

#8 = Utf8 I
#11 = Utf8 I
#12 = Utf8 LBox$${I};
#13 = Class // "Box$${I}"
#15 = NameAndType // t:I
#16 = Fieldref // "Box$${I}".t:I
#24 = Utf8 (I)V
#29 = Utf8 ()I

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 16

//class Box<any T>.set(T);

public void set(T);
descriptor: (TT;)V
flags: ACC_PUBLIC
Code:
stack=2, locals=2, args_size=2

0: aload_0
1: typed // T/Ljava/lang/Object;
4: aload_1
5: putfield // Field t:T
8: return

LineNumberTable:
line 9: 0

Signature: #40
// (TT;)V

Box	of	“Any”	versus	Box	of	int,	Bytecode
//class Box<any T>.set(T);

public void set(T);
descriptor: (I)V
flags: ACC_PUBLIC
Code:
stack=2, locals=2, args_size=2

0: aload_0
1: nop
2: nop
3: nop
4: iload_1
5: putfield // Field t:I
8: return

LineNumberTable:
line 9: 0

Signature: #40
// (TT;)V

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

“Any”	interface	and	Arrays	2.0

• Model	3	experiment	with	common	super	type	“any	interface”:	“Foo<any	
T>”	=	“Foo<any>”

• Experiment	with	Arrays	2.0	ideas,	all	arrays	implement	“Arrayish<any	T>”
–Which	is	itself	a	generic	“any”	type…
–…which	needs	specialization…
–…at	VM	boot	time,	before	the	runtime	specializer can	be	run

• Interface	dispatch	via	“extra	super”	feature
– VM	allowed	an	extra	type	to	be	injected	into	klass at	runtime,	kind	of	a	“trait”

• Probably	won’t	survive	J

Type	injection	for	kicks

17

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 18

public interface Arrayish<any T> {

default int arraySize();

default T arrayGet(int index);

default void arraySet(int index, T element);
}

Arrayish

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Nestmates

• Specialization	creates	multiple	types	at	runtime	from	a	single	class
– “crass”	has	been	a	term	thrown	around

• Difference	in	Java	versus	VM	access	rules
– Javac today	generates	bridges	to	enable	access	for	inner/outer	classes
– Not	specific	to	Valhalla,	moving	out	into	JDK10
– http://openjdk.java.net/jeps/181

• Allow	class	file	to	describe	“nest	members”	(Valhalla	prototype	attribute)

One	compilation	unit,	many	“crass”,	aren’t	we	in	the	same	class,	can	I	see	your	bits	?

19

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Value	Types
A	bucket	of	bytecodes

Image:	David	Simms	(All	rights	reserved)

20

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 21

public __ByValue final class Point {

final int x;
final int y;

private Point(int x, int y) {
this.x = x;
this.y = y;

}

public int getX() { return x; }
public int getY() { return y; }

public boolean isSamePoint(Point that) {
return this.getX() == that.getX() && this.getY() == that.getY();

}

public String toString() {
return "Point: x=" + getX() + " y=" + getY();

}

public static Point createPoint(int x, int y) {
return __Make Point(x, y);

}
}

Point	Value

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Value	Types

• Q	Type	descriptors
• “Level-0”	prototype	bytecodes

– Prototype	Javac support,	you	can	take	it	out	for	a	drive

• Flattened	all	the	things:	arrays,	fields,	compositions
• Interpreter

– Calls	to	C++	code	instead	of	assembler	or	code	generation

• Initial	C2	support
• Naïve	heap	allocation

Repository	State,	what	is	working	today

22

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Value	Types

• No	verifier	support,	must	run	with	“-noverify”
• X86_64	only
• No	optimization,	no	C1
• Primitive	fields	only
• Object	Model	– still	a	can	of	worms

– Common	super	type	?	Common	descriptor	?
– Implement	Interface	?
– Boxed	values	passed	through	pre-existing	code,	what	is	“synchronized(boxedValue)”	?

Repository	State,	what	is	not	working	just	yet

23

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 24

_vload = 203, // 0xcb
_vstore = 204, // 0xcc
_vaload = 205, // 0xcd
_vastore = 206, // 0xce
_vnew = 207, // 0xcf
_vreturn = 210, // 0xd2
_vgetfield = 211, // 0xd3
_typed = 212, // 0xd4
_invokedirect = 213, // 0xd5
_vdefault = 214, // 0xd6
_vwithfield = 215, // 0xd7
_vbox = 216, // 0xd6
_vunbox = 217, // 0xd7

// JVM Internal…
_fast_qgetfield,
_fast_qputfield,

// 15 value-type bytecodes, yippie…

bytecodes.hpp

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Value	Bytecodes

• “vnew”	– offers	atomic	construction
– Address	current	issues	with	“new”	and	“invoke init()”,	needs	all	args on	stack

• “vdefault”	– offers	simple	“all	fields	are	zero”	construction
– Provides	some	efficiency	compare	to	“vnew”	

• “vwithfield”	– C.O.W.	field	setter
– Combine	with	“vdefault”	to	help	code	patterns	like	“p.x += 3”

• “invokedirect”	– monomorphic method	invocation
• Are	not	atomic	by	default*

– vaload, vastore, qgetfield, qputfield

Some	points	of	interest

25

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Current	Work
...and	what’s	next

Image:	David	Simms	(All	rights	reserved)

26

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

“typed”	Bytecode	Experiments

• Rename	a2b,	semantically	similar	“MH.asType()”
• Replace	most	of	the	“v”	bytecodes

– since	there	are	so	few	free	bytecodes

• “extended	bytecodes”
– allow	“typed”	to	switch	“BCSet”
– allows	alias	existing	bytecode

• Consider	“Point”,	its	2	int fields	can	be	aliased	as	a	long
• E.g.	“typed Point; aload_0”	è “nop; nop; nop; lload_0”

Current	Work

27

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Thread	Local	Buffering

• Remove	naïve	heap	allocation,	reduce	GC	pressure	in	general
• Thread	local	value	buffer	pages
• Interpreter	frame	activation	records	its	current
• Simple	push/pop	model	on	frame	entry/return
• Spill	to	heap
• Investigating	cost	of	TLGC

– ‘Cause	“jmp”	(why	couldn’t	Java	bytecode	rid	us	of	“goto”	?!)
– Looks	at	Stack/LVT	entries,	copy	those,	toss	everything	else

Current	Work

28

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Reference	Fields	in	Values

• Re-enable	embedding	oops
• oopmap generation	is	already	there

–will	need	further	adjustment	with	value	thread	local	buffering,	expose	inner	oop refs
– Conditional	allocation,	could	be	heap	oop,	could	be	value	buffer.

• Some	further	GC	barrier	considerations
– GC	write	barriers	don’t	care	if	destination	is	a	buffer,	so	we	are	“mostly	good”
– Avoid	root	scan	pollution,	live	Stack/LVT	entries	(common	for	TLGC	of	value	buffers)
– Ensure		klass mirror	referenced	/	unreferenced	appropriately

• Refactor “ValueKlass::value_store()”	et	al.

Current	Work

29

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Current	Work

• C2
–Optimizations
– Integration	with	value	buffering:	i2c,	deoptimization,	etc

• Verifier	sanity	check
– Look	for	obvious	holes	in	the	current	byte-code,	but	deferring	implementation

• Rebasing	to	JDK10
– Last	sync	to	JDK9,	was	when	?	“Merge	Bankruptcy”
– Some	of	ideas	won’t	be	coming

30

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Minimal	Value	Types
Shady	Values

Image:	David	Simms	(All	rights	reserved)

31

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Minimal	Value	Types

• Up	to	15	new	byte	codes	+	unfinished	type	system	=	shipping	with	JDK10	?
– Ah,	yeah,	no.	Doh !	
– Changes	to	JLS	and	JVMS	need	to	be	pretty	much	set	in	stone…
–…and	the	path	for	getting	that	done	is	non-trivial	in	itself

• Folks	have	waited	a	long	time,	and	you	have	something	that	walks	at	least
– True,	and	we	want	to	get	those	bits	out	the	door…

A	path	to	release

32

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	do	you	release	a	
specification	compliant	
JDK/JVM	then	?

33

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Shady	Values

• The	answer	to	quicken	the	path	to	release:	make	no	specification	changes
• Hide	all	the	new	JVM	toys	under	MethodHandles

– All	new	bytecodes	become	JVM	internal,	not	visible	to	specification
– Provide	an	experimental	API	that	returns	a	method	handle	for	value	type	operations
– Gives	end-users	enough	to	play	with

• Language:	Runtime	Annotation	@jvm.internal.value.DeriveValueType
– Value	Capable	Class	(VCC),	follows	same	rules	as	“value-based”	classes

• http://cr.openjdk.java.net/~jrose/values/shady-values.html

Keep	it	in	the	shadows…

34

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 35

@jvm.internal.value.DeriveValueType
public final class Point {

final int x;
final int y;

private Point(int x, int y) {
this.x = x;
this.y = y;

}

public int getX() { return x; }
public int getY() { return y; }

}

Point	Value	Capable	Class

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Derive	Value	Type	(DVT)

• JVM	may	or	may	not	validate	the	VCC
– Similar	rules	to	Value	Types	and	“value-based	classes”

• Derive’s a	structurally	equivalent	value	type	(DVT)	which	is	field	compatible	
with	the	VCC	(Point$Value)

• User	can	query	an	API	if	there	is	a	DVT	class	associated	with	VCC
– j.l.i.MethodHandles support	DVT/array	classes

• Further	API	for	obtaining	and	using	the	DVT,	and	boxing	via	VCC
• Supports	data	only,	method	invocation	limited	to	VCC

– Current	limitations:	primitives	only,	no	composition	(MVT1.0)

36

Encountering	the	DeriveValueType annotation

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 37

public class ValueType<T> {

// Query methods...
static boolean classHasValueType(Class<?> x);
static <T> ValueType<T> forClass(Class<T> x);

// Class/type query...Useful for j.l.i.MethodHandles
Class<T> boxClass();
Class<?> sourceClass();
Class<?> valueClass();
Class<?> arrayValueClass();
Class<?> arrayValueClass(int dims);

// Operations…next slide…

jdk.experimental.value.ValueType API

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 38

// Operations…

MethodHandle defaultValueConstant();
MethodHandle substitutabilityTest();
MethodHandle substitutabilityHashCode();
MethodHandle findWither(String name, Class<?> type);
MethodHandle unbox();
MethodHandle box();
MethodHandle newArray();
MethodHandle arrayGetter();
MethodHandle arraySetter();
MethodHandle newMultiArray(int dims);

}

jdk.experimental.value.ValueType API

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 39

Class<?> VCC = Point.class;
MethodHandles.Lookup lookup = MethodHandles.lookup();

ValueType<?> VT = ValueType.forClass(VCC);
Class<?> vTArrayClass = VT.arrayValueClass();
MethodHandle setMh = MethodHandles.arrayElementSetter(vTArrayClass);
MethodHandle getMh = MethodHandles.arrayElementGetter(vTArrayClass);

//Setup an array...it will be flattened, important to me here...
int arrSize = w * h;
Object arr = MethodHandles.arrayConstructor(vTArrayClass).invoke(arrSize);
for (int i = 0 ; i < arrSize; i++) {
// Construct VCC, arraySetter will unbox for me...
Point p = new Point(i, 0);
setMh.invoke(arr, i, p);

}
// Give me a point...
Point apoint = getMh.invoke(arr, (w-1));

Example:	Flat	array	storage…

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

MVT	1.1

• Open	up	experimental	access	to	“Valhalla	Value	Types”	(VVT)
– ability	to	dynamically	generate	byte	codes	which	refer	directly	to	QTypes
– allow	methods	that	operate	directly	on	the	value	type

• Experiment	layout	optimizations
• Allow	composition	/	references
• Explore	“typed	acmp”
• Common	descriptor,	“P-Type”	or	“U-Type”	experiments

Moving	forward,	stretch	goals…

40

Copyright	©	2017, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	preceding	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.

41

