
Type Systems for
JavaScript

Elm, Flow, and TypeScript
Jfokus 2017, Stockholm, Sweden

Slides for this talk: http://bit.ly/types-jfokus

 / Oliver Zeigermann @DJCordhose

Extended Version (constantly updated): http://bit.ly/js-types

https://www.jfokus.se/jfokus/talks.jsp#TypedJavaScriptwithT
http://bit.ly/types-jfokus
http://zeigermann.eu/
http://twitter.com/djcordhose
http://bit.ly/js-types

Disclaimer
I am a practitioner, using both TypeScript and Flow in my projects

I am no type theory expert

I have not used Elm in any real world project, yet

Not a single cat image in this talk

Even worse: not even any image

My compensation to make this a valid talk

https://twitter.com/Creatuluw/status/749151998415634432

https://twitter.com/Creatuluw/status/749151998415634432

Why using type systems?

type systems make code easier to
maintain

type annotations / inferred types

can make code more readable
can make code easier to analyse
can allow for reliable refactoring
can allow for generally better IDE support
can catch some (type related) errors early

Anders Hejlsberg@Build2016: Big JavaScript codebases tend to become
"read-only".

https://channel9.msdn.com/Events/Build/2016/B881

TypeScript
ease of use and tool support over

soundness

By Microsoft (Anders Hejlsberg)
Based on ES6 (probably ES7/ES8)
Adds optional type annotations, visibility, and decorators
Compiler checks and removes annotations
2.x with major changes released recently

http://www.typescriptlang.org/

We restrict ourselves to version 2 here

http://www.typescriptlang.org/

Flow
soundness, no runtime exceptions as goal

By Facebook
Flow is a static type checker, designed to quickly �nd errors in
JavaScript applications
Not a compiler, but checker
If present, type annotations can very easily be removed by babel
for runtime

http://�owtype.org/

http://flowtype.org/

Elm
simplicity, soundness, no runtime

exceptions

Language of its own
functional, not object-oriented
no null, no mutation
Geared towards Web Applications
Compiler creates JavaScript

http://elm-lang.org/

http://elm-lang.org/

Demo
Some basic TypeScript 2.2 hacking in

Visual Studio Code 1.10

TypeScript (similar to what we just
hacked)

let foo: string;
// variables can have type information
let foo: string;
foo = 'yo';
// Error: Type 'number' is not assignable to type 'string'.
foo = 10;

// types can be inferred (return type)
function sayIt(what: string) {
 return `Saying: ${what}`;
}
const said: string = sayIt(obj);

class Sayer {
 what: string; // mandatory

 constructor(what: string) {
 this.what = what;
 }

 // return type if you want to
 sayIt(): string {
 return `Saying: ${this.what}`;
 }
}

Flow
// variables can have type information
let foo: string;
foo = 'yo';
// Error: number: This type is incompatible with string
foo = 10;

// types can be explicit (parameter) or inferred (return type)
function sayIt(what: string) {
 return `Saying: ${what}`;
}
const said: string = sayIt(obj);

class Sayer {
 what: string; // type also mandatory

 constructor(what: string) {
 this.what = what;
 }

 // return type if you want to
 sayIt(): string {
 return `Saying: ${this.what}`;
 }
}

Flow and TypeScript basics are
pretty similar

Those basic features help with documentation, refactoring, and IDE
support

Elm: a totally different story
let
 -- declaration using type
 foo : String
 foo = "yo"
 -- Error: everthing is const, can not re-assign
 foo = "yo yo"

 foo2 : String
 -- Error: `The definition of `obj2` does not match its type annotation.`
 foo2 = 10

let
 -- type annotations are optional, can be inferred
 sayIt : String -> String
 sayIt what =
 "Saying: " ++ what

 said : String
 said = sayIt obj

No classes and methods in elm

Structural Typing for both TypeScript and
Flow

class Dog {
 name: string;
 woof() {...}
}

interface NamedObject {
 name: string;
}
// this is fine class does not need to explicitly implement it
let namedObject: NamedObject = dog;

// same thing, also fine
let namedObject: NamedObject = {
 name: "Olli"
};

// not fine in either, missing name
let namedObject: NamedObject = {
 firstName: "Olli"
};

Structural vs Nominal Typing
Nominal Typing: types are compatible when their declared types
match
Structural Typing: types are compatible when their structures
match
Java, C#, C++, C all use nominal typing exclusively
Flow classes are also treated as nominal types
TypeScript classes are treated as structural types
Everything else in both Flow and TypeScript uses structural typing
Elm always uses structural typing with exact matches on Records

Nullability
One of my main sources of runtime exceptions when programming

Java

Even after many years it is still surprising how many corner cases I miss in complex code

Flow

what is the result here in pure JavaScript?

function foo(num) {
 if (num > 10) {
 return 'cool';
 }
}
console.log(foo(9).toString());

"Uncaught TypeError: Cannot read property 'toString' of undefined"

What the �ow checker thinks about this

// error: call of method `toString`.
// Method cannot be called on possibly null value
console.log(foo(9).toString());

To �x this, we need to check the result

const fooed = foo(9);
if (fooed) {
 fooed.toString();
}

Types are non-nullable by default in �ow

TypeScript
// both TypeScript and flow allow
// to put the type annotation here instead of using inference
function foo(num: number) {
 if (num > 10) {
 return 'cool';
 }
}

// same as flow
const fooed: string|void = foo(9);
if (fooed) {
 fooed.toString();
}

// or tell the compiler we know better (in this case we actually do)
fooed!.toString();

Only applies to TypeScript 2.x

Only works when strictNullChecks option is checked

All types nullable by default in TypeScript 1.x

Elm

There neither is null nor undefined in elm

Rather plus pattern matchingMaybe

-- Maybe is predefined
-- http://package.elm-lang.org/packages/elm-lang/core/latest/Maybe
type Maybe a = Nothing | Just a

foo : Int -> Maybe String
foo num =
 if num > 10 then
 Just "cool"
 else
 Nothing

-- pattern matching (need to match all cases)
case (foo 11) of
 Just message -> message
 Nothing -> ""

https://guide.elm-lang.org/error_handling/maybe.html

Generic Type information

Types can be parameterized by others

Most common with collection types

let cats: Array<Cat> = []; // can only contain cats
let animals: Array<Animal> = []; // can only contain animals

// nope, no cat
cats.push(10);

// nope, no cat
cats.push(new Animal('Fido'));

// cool, is a cat
cats.push(new Cat('Purry'));

// cool, cat is a sub type of animal
animals.push(new Cat('Purry'));

Up to this point this pretty much works in
Flow and TypeScript the same way ...

... but wait

TypeScript
let cats: Array<Cat> = []; // can only contain cats
let animals: Array<Animal> = []; // can only contain animals

// error TS2322: Type 'Animal[]' is not assignable to type 'Cat[]'.
// Type 'Animal' is not assignable to type 'Cat'.
// Property 'purrFactor' is missing in type 'Animal'.
cats = animals;

// wow, works, but is no longer safe
animals = cats;

// because those are now all cool
animals.push(new Dog('Brutus'));
animals.push(new Animal('Twinky'));

// ouch:
cats.forEach(cat => console.log(`Cat: ${cat.name}`));
// Cat: Purry
// Cat: Brutus
// Cat: Twinky

TypeScript allows for birds and dogs to be cats here :)

Flow
let cats: Array<Cat> = []; // can only contain cats
let animals: Array<Animal> = []; // can only contain animals

// ERROR
// property `purrFactor` of Cat. Property not found in Animal
cats = animals;

// same ERROR
animals = cats;

Flow does not have have this caveat

The flipside
This code is safe (as we access cats in a readonly fashion)

function logAnimals(animals: Array<Animal>) {
 animals.forEach(animal => console.log(`Animal: ${animal.name}`));
}

logAnimals(cats);

This works in TypeScript (and it should)
however, potentially not safe, there is nothing to keep us from
writing to cats
Flow does not allow this, even though it is safe

much despised Java generics excel here as they can actually make
that code safe (another di�erence:)Use-site variance

// Java
void logAnimals(List<? extends Animal> animals) {
 animals.forEach(animal -> System.out.println("Animal: " + animal.name));
 // illegal:
 animals.add(new Animal("Twinky"));
}

https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)#Comparing_declaration-site_and_use-site_annotations

Some Type Inference Magic

Consider

class Dog { woof() { } }

const animals = [];
animals.push(new Dog());

both TypeScript and Flow know this is safe, as we have only added
Dogs so far

animals.forEach((animal: Dog) => animal.woof());

Adding Cats later and thus changing array type later

does not a�ect TypeScript (correct), but makes Flow fail

class Cat { meow() { } }
animals.push(new Cat());

Elm

does not have classes or subtypes

has Records (like JavaScript Objects) and generic data structures (e.g.
List)

type alias Animal = { name : String }
someAnimal1 = { name = "Patrick"}

animals : List Animal -- generic data structure
animals = [someAnimal1, someAnimal2, ...]

type alias Cat = { name : String, coatColor : String }

cats : List Cat
cats = [someCat1, someCat2, ...]

-- sure
moreAnimals : List Animal
moreAnimals = animals

-- Error: Looks like a record is missing the `coatColor` field.
evenMoreAnimals : List Animal
evenMoreAnimals = cats

-- nope, same problem
moreCats : List Cat
moreCats = animals

Differences in Generic Types

TypeScript
 (more special):

parametric types are compatible if the type to assign from has
a more special type parameter
seems most intuitive, allows for obviously wrong code, though

Flow

Array in Flow has an invariant parametric type
more expressive, harder to master, disallows some correct
code

Elm
Generic data structures using type variables
all types have to match exactly

always covariant

using generic types you can choose from invariant (exact
match), covariant + (more special), and contravariant - (more
common)

https://twitter.com/ahejlsberg/status/822882400724131841?s=03
https://flowtype.org/docs/classes.html#polymorphism-and-type-parameter-variance

Mutation, const

TypeScript and �ow: same as JavaScript (const optional, immutable
via lib)

TypeScript: readonly for properties

Elm: everything always immutable and const

`Changing` records in Elm

Central Question: If everything always immutable and const, how do
you make modi�cations?

Answer:

you do not really make mutations
instead create a new record
taking over some of the properties of the old record and
setting some new properties

type alias Cat = { name : String, coatColor : String, age: Int}
someCat = { name = "Purry", age = 2, coatColor = "gray"}

haveBirthday : Cat -> Cat
haveBirthday cat =
 -- make a copy, but with changed age
 { cat | age = cat.age + 1 }

agedCat : Cat
agedCat = haveBirthday someCat

`any` type

can be anything, not speci�ed

can selectively disable type checking

function func(a: any) {
 return a + 5;
}

// cool
let r1: string = func(10);

// cool
let r2: boolean = func('wat');

�ow / TypeScript 2: explicit any supported, but any never inferred
Elm: does not exist, everything has exact type

Union Types
aka Disjoint Unions aka Tagged Unions aka Algebraic data types

to describe data with weird shapes

depending on some data other data might apply or not

// a disjoint union type with two cases
type Response = Result | Failure;

type Result = { status: 'done', payload: Object }; // all good, we have the data
type Failure = { status: 'error', code: number}; // error, we get the error code

Implementation both in Flow and
TypeScript

function callback(response: Response) {
 // works, as this is present in both
 console.log(response.status);
 // does not work,
 // as we do not know if it exists, just yet
 console.log(response.payload); // ERROR
 console.log(response.code); // ERROR

 switch (response.status) {
 case 'done':
 // this is the special thing:
 // type system now knows, this is a Result
 console.log(response.payload);
 break;
 case 'error':
 // and this is a Failure
 console.log(response.code);
 break;
 }
}

Elm

simple and concise union types

type Response = Result String | Failure Int

switching over union type alternatives using pattern matching

callback : Response -> String
callback response =
 -- pattern matching
 case response of
 Result payload -> payload
 Failure code ->
 if code >= 400 && code < 500 then "you messed up"
 else "we messed up"

usage

callback (Result "response")
-- response

callback (Failure 404)
-- you messed up

Where do they excel?
TypeScript: supporting people from Java and C# land

more complete IDE support
language server
large set of 3rd party declaration �les

Flow: providing typings for idiomatic JavaScript
easy to get started even with existing project
more powerful and �exible generics
nominal typing for classes

Elm: functional language deliberately di�erent from JavaScript
simplicity of type system (no JavaScript legacy)
always completely typed (no any)
everything immutable and constant always and everywhere
complete package (also great orientation for beginners)

Special thanks for giving feedback and
helping with this presentation

Daniel Rosenwasser: @drosenwasser (from the TypeScript team)
Avik Chaudhuri: @__avik (from the Flow team)
Richard Feldman: @rtfeldman and Evan Czaplicki: @czaplic (Elm
people)

Thank you!

Questions / Discussion
 / Oliver Zeigermann @DJCordhose

Slides for this talk: http://bit.ly/types-jfokus

Extended Version (constantly updated): http://bit.ly/js-types

http://zeigermann.eu/
http://twitter.com/djcordhose
http://bit.ly/types-jfokus
http://bit.ly/js-types

