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JPDM, A Structured 
approach To

Performance Tuning
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Java Performance Tuning Workshops

About Me

Co-Founded jClarity

Kodewerk Ltd Performance Consulting
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Disclaimer
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Our Typical Customer

Application isn’t performing to project sponsors expectations

users wait for minutes for the application to respond
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Looks like a database problem, we need to migrate to

[buzzname goes here]

Developers Get Involved

StringBuffer is being used all over the place…

We need to change it to StringBuilder
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where the 
@$*%! is the 

problem?
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Managers Get Involved

Form a tiger team
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What is a Tiger Team?

A team of specialists in a particular field 
brought together to work on specific tasks.
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What is a Tiger Team?

A forum where experts from different 
disciplines come together to express an 

opinion that defends their specialty



Copyright 2017 Kirk Pepperdine. All rights reserved

Measure Don’t Guess®
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Why a System Model?

Help us to understand 


what measures are important


defines requirements for tooling


provides a context for us to understand the measures


facilitate the definition of a diagnostic process


Java Performance Diagnostic Model (JPDM)
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Where do Developers Live?
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Application

Developers Live Here

Code (algorithms)
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Application

JVM

Work in a virtualized 
environment

Code (algorithms)

Managed Memory, Execution Engine

Developers Live Here
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Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

public class Software {

   public static void main( String[] args) {

      System.out.println(“Software is abstract”);

   }

}
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Hardware is Real!

capacities

volume

throughput

clock speed

granularity

cache line, sector size
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CPU

capacity : number of cores

number of units in ALU

size of caches

throughput : clock speed, CPI

bandwidth on various pipes (QPI)

granularity : cache line size



Copyright 2017 Kirk Pepperdine. All rights reserved

Memory

capacity : number of bytes of RAM

throughput : clock speed of BUS

tempered by bank cool of time

chunk size : cache line size

typically 8 reads per cache line
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Disk

capacity : number of bytes of RAM

throughput : controller clock speed

~1 Bbit/sec (SATA ~3Gbits/sec)

granularity : disk sector (512 bytes)

other latencies

sweep arm speed
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Network

capacity : 1 per network card

bandwidth : maximum volume of data 
transferred per second (10^9 bits/sec)

throughput : depends on protocol 
overheads

granularity : depends on protocol

tcp payload is typically 1500 bytes
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Other Limits

Other hardware devices

eg, video, sound cards

GPU

Heat

Battery capacities
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Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks Reality

Abstract

meets
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Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

No

Dynamics
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Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

Add dynamicsActors
usage patterns
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Question?

Which is faster?

a) Bubble sort
b) Quick sort
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Hint

In Big O notation...
 - Bubble sort is N^2  
 - Quick sort of Nlog(N)
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However

bubble

quick
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However

bubble

quick

Number of items

comes from the actors
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Performance Tuning Methodology

If youombine


Based on the System model we just developed


hypothesis free


methodical


step wise process to arrive at a conclusion
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Hardware Consumption

Actors drive the application

Application drives the JVM

JVM assisted by OS consumes Hardware

Hardware is consumed

function of how actors interact with application

function of how application is coded

consumption limited by capacity

pattern of consumption is important

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

Actors
usage patterns
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Dominating Consumer

garbage collection logs

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

Actors
usage patterns

Activity that dominates how the CPU is 
utilized


Determination dominator by analyzing


CPU counters


Garbage collection logs
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Dominating Consumers

garbage collection logs

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

Actors
usage patterns

Application

JVM

None

System
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sys cpu > ~10% of

user cpu

 user CPU ~= 100% memory efficient?

GC Logs

Application

JVMNone

System

system profiling: netstat, mpstat,

iostat, sar, strace, etc...

Thread starvation

Thread dump

app/CPU profiling

GC tuning, pool sizes,

collectors, ...

Memory profiling, size

frequency, life span,...

yes

yes yes

no

no

no

Analysis
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Application

JVMNone

System

passi
vely 

 

dominant

aggressivly 
dominant

Expression of CPU Consumption
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Application

JVMNone

System

Kernel time

Idle User time

Measuring Consumption
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  r  b  swpd  free      buff        cache   si  so bi    bo        in          cs         us  sy  id  wa 
  3  9  100   24496 11096 13267036   0   0   0     5            0            1       2    1 96      1
  3  2  100   23420 11088 13268328   0   0   0     0    77330   175352   17   26  39   17
  3  9  100  20836  11088 13270628   0   0   0   68  105118   227382   14   40  21   25
  8  4  100  23356  11080 13268272   0   0   0     0    80062  164387    12   30  29   30
  7  7  100  23180  11084 13267068   0   0   0   72    98353   234851   15   43  28   15
11  2  100  25820  11088 13263676   0   0   0 120  100749   214921    11  42  17    30
13  1  100  22316  11088 13267176   0   0   0     0  103878  246723     16  56  19     9 
  4  3  100  21824  11088 13269140   0   0   0     0    48625    97288     15  16    9    60
11  2  100  20932  11080 13269808   0   0   0     0   110760  236774     14  41  24   20
  1 12 100  23624  11084 13267488   0   0   0 204     69117  148611     15  27  25   33
  7   5 100  24996  11096 13267476   0   0   0 164     24495   48552      13 10  30   48
  1 12 100  20792  11096 13271872   0   0   0     0     25659   54331        8   9  26   56
  6   8 100   21984 11080 13269920   0   0   0   20     46309 101404      16 18  51   15
  4   9 100  22764  11080 13268956   0   0 16     0     88553 229557      17  35 38   11
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Benchmark benchmark = new Benchmark()

benchmark.configure();

performance = benchmark.baseline(application);

user.setHappy(performance.meets(requirements));

while (( ! user.isHappy()) && (user.hasMoney())) {

    Profiler profiler = performance.identifyDominatingConsumer();

    profilingResults = benchmark.profile(profiler);

    application.fixUsing( profilingResults);

    while ( application.failsQA())

        application.debug();

    performance = benchmark.baseline(application);

    user.setHappy(performance.meets(requirements));

}

Benchmarking Process
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Actors
Test harness

Application

JVM

Hardware/OS

Data

Monitoring

Things We Need
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Time for a demo
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sys cpu > 10% of

user cpu

System

system profiling: netstat, mpstat,

iostat, sar, strace, etc...

yes

Question?

Why the high level of kernel CPU?

Observations

no disk I/O, network activity or video

context switching due to lock contention?

Monitor threads with VisualVM

Dominating Consumer #1
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sys cpu > 10% of

user cpu

 user CPU ~= 100% memory efficient?

GC Logs

JVM

Memory profiling, size

frequency, life span,...

yes

no

no

Question?

Why the high memory consumption

Profile object creation

Dominating Consumer #2
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Need to gather clear requirements

Develop a sound benchmarking environment

get better measurements

Always identify dominating consumer

refocus teams on problems that matter

What About Our Customer
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Questions?


