JPDM, A Structured
approach To
Performance Tuning
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Disclaimer

e ——

Professor Zapinsky proved that the squid is more intelligent than
the housecat when posed with puzzles under similar conditions
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Our Typical Customer

@ Application isnt performing to project sponsors expectations

@ users wait for minutes for the application to respond

" HI, You'RE THROUGH TO KAREN,
How MAH | FRUSTRATE "TOL
“Tona- 7.‘
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Developers Get Involved

StringBuffer is being used all over the place...
We need to change it to StringBuilder

Looks like a database problem, we need-to migrate fo
[buzzname goes here]
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Managers Get Involved

Form a tiger team
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What is a Tiger Team?

A team of specialists in a-particular field
brought together to-work on specific tasks.
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What is a Tiger Team?

A forum where experts from different
disciplines come together o express an
opinion that defends their specialty
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Measure Dont Guess®
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Why a System Model?

@ Help us to understand
@ what measures are important
@ defines requirements for tooling
@ provides a confext for us fo understand the measures

@ facilitate the definition of a diagnostic process

@ Java Performance Diagnostic Model (JPDM)
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Where do Developers Live?
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~ Developers Live Here
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~ Developers Live Here

JVM

Managed Memory, Execution Engine Work in a Vi rfualized
environment

Copyright 2017 Kirk Pepperdine. All rights reserved



public class Software {

public static void main( String[] args) 1
System.out.printin(*Software is abstract”);

;

JVM

Managed Memory, Execution Engine
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Hardware is Real!

@ capacities
dvolume

@ throughput
@clock speed

@granularity

@cache line, sector size
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CPU

@ capacity : number of cores

@

@number of units in ALU
R
@size of caches
R AN @ throughput : clock speed, CPI
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@bandwidth.on various pipes (QPI)

v~ .  @granularity : cache line size
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Memory

@

: @capacity : number of bytes of RAM
i @ throughput : clock speed of BUS
0 1 6 @tempered by bank cool of time

g T
; ozasn |
ViVS Nv73iqebmo U

@chunk size : cache line size

@typically 8 reads per cache line
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Disk

@ capacity :-number of bytes of RAM
@ throughput : controller clock speed

@71 Bbit/sec (SATA ~3Gbits/sec)

@granularity : disk sector (512 bytes)

dother latencies

@sweep arm Sspeed
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Network

@capacity : 1 per network card

@bandwidth : maximum volume of data
transferred per second (1079 bits/sec)

@ throughput : depends on protocol

overheads

@ granularity : depends on protocol

@tcp payload is typically 1500 bytes
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Other Limits

@ Other hardware devices

D®eq, video, sound cards
oGPU

@Heat

@ DDR2 13664 @
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@Battery capacities
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Abstract

JVM

meets

Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks

4 ' Reality
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JVM

Managt 3" /e 4o ¥, L% ¢ it L | &) o’RS

OS/Hardware

CPU, memory, disk I/0
~twork 1/0, Locks
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' Add dynamics

JVM

Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks
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Question?

Which is faster?

a) Bubble sort
b) Quick sort
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Hint

In Big O notation...
- Bubble sort is N°2
- Quick sort of Nlog(N)
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However
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However

Number of items
comes from the actors
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Performance Tuning Methodology

@ Based on the System model we just developed
@ hypothesis free
@ methodical

@ step wise process fo arrive at a conclusion
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JVM

Hardware Consumption

@ Actors drive the application

o Application rdrivres the VJVM |

@ function .of how actors interact with application

@ JVM assisted by OS consumes Hardware
@ function of how application is coded

Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks

@ Hardware is consumed
@ consumption limited by capacity

@ pattern of consumption is important
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Dominating Consumer

@ Activity that dominates how the CPU is
utilized

@ Determination dominator by analyzing
JVM

@ CPU counters
Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks

@ Garbage collection logs
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JVM

Dominating Consumers

Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks

Application
-------------------------- > JVM
"""""""""""""" > System

-------------------------- -
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sys cpu > ~10% of
user cpu

no

\4

Analysis

system profiling: netstat, mpstat,
iostat, sar, strace, etc...

'jé.s
memory efficient? _ ¥ __ »(_ Application
GC Logs
» O
\ 4 :
app/CPU profiling
JVM

S

GC tuning, pool sizes, Memory profiling, size
collectors, ...

frequency, life span,...
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Expression of CPU Consumption

aggressivly
dominant
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Measuring Consumption

=

7

System

\Kernel time /
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Benchmarking Process

Benchmark benchmark = new Benchmark()
benchmark.configure();
performance = benchmark.baseline(application);
user.setHappy(performance.meets(requirements));
while (( ! user.isHappy()) && (user.hasMoney())) {
Profiler profiler = performance.identifyDominatingConsumer();
profilingResults = benchmark.profile(profiler);
application.fixUsing( profilingResults);
while ( application.failsQA())
application.debug();
performance = benchmark.baseline(application);
user.setHappy(performance.meets(requirements));
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Things We Need

SN '//4'
" y o\ \ VM
Monitoring

Hardware/OS
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Time for a demo
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Dominating Consumer #1

._":?QS

o,
Syscpu>10%of g /- > System

user cpu

system profiling: netstat, mpstat,

iostat, sar, strace, etc...
@ Question?

® Why the high level of kernel CPU?
@ Observations
@ no disk I/0, network activity or video
@ context switching due to lock contention?

@ Monitor threads with VisualVM
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Dominating Consumer #2

sys cpu > 10% of @ Question?
user cpu

\4

@ Why the high memory consumption

e @ Profile object creation

memory efficient?
GC Logs

v O
\4

JVM

B

Memory profiling, size
frequency, life span,...
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What About Our Customer

@ Need to gather clear requirements

@ Develop a sound benchmarking.environment
@ get better measurements

@ Always identify dominating consumer

@ refocus teams on problems that matter
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Questions?

Copyright 2017 Kirk Pepperdine. All rights reserved




