JPDM, A Structured
approach To
Performance Tuning

Copyright 2017 Kirk Pepperdine. All rights reserved

‘ About Me

Kodewerk Ltd PerFormance Consulhng

~ @ ' 'm' B o iR
e nva“ﬁerfwmnpge Tunin: jorkst
' e e ek L

,' '
‘.—a— v'—‘ ﬂ

-~ S

v .

E2]ava

Champions

Disclaimer

e ——

Professor Zapinsky proved that the squid is more intelligent than
the housecat when posed with puzzles under similar conditions

Copyright 2017 Kirk Pepperdine. All rights reserved

Our Typical Customer

@ Application isnt performing to project sponsors expectations

@ users wait for minutes for the application to respond

" HI, You'RE THROUGH TO KAREN,
How MAH | FRUSTRATE "TOL
“Tona- 7.‘

Copyright 2017 Kirk Pepperdine. All rights reserved

Developers Get Involved

StringBuffer is being used all over the place...
We need to change it to StringBuilder

Looks like a database problem, we need-to migrate fo
[buzzname goes here]

Copyright 2017 Kirk Pepperdine. All rights reserved

O X
¥ . .' '/

P .

-

\

Managers Get Involved

Form a tiger team

Copyright 2017 Kirk Pepperdine. All rights reserved

What is a Tiger Team?

A team of specialists in a-particular field
brought together to-work on specific tasks.

Copyright 2017 Kirk Pepperdine. All rights reserved

What is a Tiger Team?

A forum where experts from different
disciplines come together o express an
opinion that defends their specialty

Copyright 2017 Kirk Pepperdine. All rights reserved

Measure Dont Guess®

i I_I:__-’: —_rFa I_I-..:-’: [g = B

Lp - Pt e I Eoemet HE e e

Copyright 2017 Kirk Pepperdine. All rights reserved

Why a System Model?

@ Help us to understand
@ what measures are important
@ defines requirements for tooling
@ provides a confext for us fo understand the measures

@ facilitate the definition of a diagnostic process

@ Java Performance Diagnostic Model (JPDM)

Copyright 2017 Kirk Pepperdine. All rights reserved

Where do Developers Live?

Copyright 2017 Kirk Pepperdine. All rights reserved

~ Developers Live Here

Copyright 2017 Kirk Pepperdine. All rights reserved

~ Developers Live Here

JVM

Managed Memory, Execution Engine Work in a Vi rfualized
environment

Copyright 2017 Kirk Pepperdine. All rights reserved

public class Software {

public static void main(String[] args) 1
System.out.printin(*Software is abstract”);

;

JVM

Managed Memory, Execution Engine

Copyright 2017 Kirk Pepperdine. All rights reserved

GIGABYTE

5-UD3LR

| C Ga-epa

R4 FSB 1600°% ., F

DDR2 1366+ (‘< (\"uu

e o r“‘u
e = b

Hardware is Real!

@ capacities
dvolume

@ throughput
@clock speed

@granularity

@cache line, sector size

Copyright 2017 Kirk Pepperdine. All rights reserved

CPU

@ capacity : number of cores

@

@number of units in ALU
R
@size of caches
R AN @ throughput : clock speed, CPI

(g3 M
; ozasn |
ViVS Nv73iqebmo U

@bandwidth.on various pipes (QPI)

v~ . @granularity : cache line size

Copyright 2017 Kirk Pepperdine. All rights reserved

Memory

@

: @capacity : number of bytes of RAM
i @ throughput : clock speed of BUS
0 1 6 @tempered by bank cool of time

g T
; ozasn |
ViVS Nv73iqebmo U

@chunk size : cache line size

@typically 8 reads per cache line

Copyright 2017 Kirk Pepperdine. All rights reserved

Disk

@ capacity :-number of bytes of RAM
@ throughput : controller clock speed

@71 Bbit/sec (SATA ~3Gbits/sec)

@granularity : disk sector (512 bytes)

dother latencies

@sweep arm Sspeed

Copyright 2017 Kirk Pepperdine. All rights reserved

Network

@capacity : 1 per network card

@bandwidth : maximum volume of data
transferred per second (1079 bits/sec)

@ throughput : depends on protocol

overheads

@ granularity : depends on protocol

@tcp payload is typically 1500 bytes

Copyright 2017 Kirk Pepperdine. All rights reserved

Other Limits

@ Other hardware devices

D®eq, video, sound cards
oGPU

@Heat

@ DDR2 13664 @

Somz 1 (ETN =¥ i PHASELED 17 3
toniz(c,Yultra Durable 3@ 20z Copper PCB

1R2
«-

omss sB 7600%5.5

ey r 44_
svs_Fae N b

@Battery capacities

Copyright 2017 Kirk Pepperdine. All rights reserved

Abstract

JVM

meets

Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks

4 ' Reality

Copyright 2017 Kirk Pepperdine. All rights reserved

JVM

Managt 3" /e 4o ¥, L% ¢ it L | &) o’RS

OS/Hardware

CPU, memory, disk I/0
~twork 1/0, Locks

Copyright 2017 Kirk Pepperdine. All rights reserved

' Add dynamics

JVM

Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks

Copyright 2017 Kirk Pepperdine. All rights reserved

Question?

Which is faster?

a) Bubble sort
b) Quick sort

Copyright 2017 Kirk Pepperdine. All rights reserved

Hint

In Big O notation...
- Bubble sort is N°2
- Quick sort of Nlog(N)

Copyright 2017 Kirk Pepperdine. All rights reserved

However

30 nlg{n)
1002

3 o4 wo3wo3cA

10 12
number of items

Copyright 2017 Kirk Pepperdine. All rights reserved

However

Number of items
comes from the actors

Copyright 2017 Kirk Pepperdine. All rights reserved

Performance Tuning Methodology

@ Based on the System model we just developed
@ hypothesis free
@ methodical

@ step wise process fo arrive at a conclusion

Copyright 2017 Kirk Pepperdine. All rights reserved

JVM

Hardware Consumption

@ Actors drive the application

o Application rdrivres the VJVM |

@ function .of how actors interact with application

@ JVM assisted by OS consumes Hardware
@ function of how application is coded

Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks

@ Hardware is consumed
@ consumption limited by capacity

@ pattern of consumption is important

Copyright 2017 Kirk Pepperdine. All rights reserved

Dominating Consumer

@ Activity that dominates how the CPU is
utilized

@ Determination dominator by analyzing
JVM

@ CPU counters
Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks

@ Garbage collection logs

Copyright 2017 Kirk Pepperdine. All rights reserved

JVM

Dominating Consumers

Managed Memory, Execution Engine

OS/Hardware

CPU, memory, disk I/0
network I/0, Locks

Application
-------------------------- > JVM
"""""""""""""" > System

-------------------------- -
Copyright 2017 Kirk Pepperdine. All rights reserved

sys cpu > ~10% of
user cpu

no

\4

Analysis

system profiling: netstat, mpstat,
iostat, sar, strace, etc...

'jé.s
memory efficient? _ ¥ __ »(_ Application
GC Logs
» O
\ 4 :
app/CPU profiling
JVM

S

GC tuning, pool sizes, Memory profiling, size
collectors, ...

frequency, life span,...

Copyright 2017 Kirk Pepperdine. All rights reserved

Expression of CPU Consumption

aggressivly
dominant

Copyright 2017 Kirk Pepperdine. All rights reserved

Measuring Consumption

=

7

System

\Kernel time /

Copyright 2017 Kirk Pepperdine. All rights reserved

swpd free
100
100
100 20836
100 23356
100 23180
100 25820
100 22316
100 21824
100 20932
12100 23624
7 5100 24996
112100 20792
6 8100
4 9100

rb
39
32
39
8 4
77
12
3 1
4 3
12
1

22764

buff

24496 11096 13267036
23420 11088 13268328

11088 13270628
11080 13268272
11084 13267068
11088 13263676
11088 13267176
11088 13269140
11080 13269808
11084 13267488
11096 13267476
11096 13271872

21984 11080 13269920

11080 13268956

ecNeoleNeoNoleNololleNoNoNoNoNo)

cache si so bi

eNelNeNeoNeolleNeNoleNoNolNoNoNo)

bo in
0 5 0
0O 0 77330
0 68 105118
0 80062
72 98353

0
0
0120 100749

CS
1
175352
227382
164387
234851
214921

0" 0 103878 246723

0O O 48625

97288

0 O 110760 236774

0 204
0 164
0O O
0 20
16 O

69117 148611
24495 48552
25659 54331
46309 101404
88553 229557

Copyright 2017 Kirk Pepperdine. All rights reserved

us sy
2ok
17 26
4 40
12 30
43

11 42
16 56
15 16
14 41
15 27
1310
8 9
16 18
17 35

D6

39
2

29
28
L4
19

24
25
30
26
51

38

d wa

1
17
25
30
15
30

60
20
33
48
56
15
11

Benchmarking Process

Benchmark benchmark = new Benchmark()
benchmark.configure();
performance = benchmark.baseline(application);
user.setHappy(performance.meets(requirements));
while ((! user.isHappy()) && (user.hasMoney())) {
Profiler profiler = performance.identifyDominatingConsumer();
profilingResults = benchmark.profile(profiler);
application.fixUsing(profilingResults);
while (application.failsQA())
application.debug();
performance = benchmark.baseline(application);
user.setHappy(performance.meets(requirements));

Copyright 2017 Kirk Pepperdine. All rights reserved

Things We Need

SN '//4'
" y o\ \ VM
Monitoring

Hardware/OS

Copyright 2017 Kirk Pepperdine. All rights reserved

Time for a demo

Copyright 2017 Kirk Pepperdine. All rights reserved

Dominating Consumer #1

._":?QS

o,
Syscpu>10%of g /- > System

user cpu

system profiling: netstat, mpstat,

iostat, sar, strace, etc...
@ Question?

® Why the high level of kernel CPU?
@ Observations
@ no disk I/0, network activity or video
@ context switching due to lock contention?

@ Monitor threads with VisualVM

Copyright 2017 Kirk Pepperdine. All rights reserved

Dominating Consumer #2

sys cpu > 10% of @ Question?
user cpu

\4

@ Why the high memory consumption

e @ Profile object creation

memory efficient?
GC Logs

v O
\4

JVM

B

Memory profiling, size
frequency, life span,...

Copyright 2017 Kirk Pepperdine. All rights reserved

What About Our Customer

@ Need to gather clear requirements

@ Develop a sound benchmarking.environment
@ get better measurements

@ Always identify dominating consumer

@ refocus teams on problems that matter

Copyright 2017 Kirk Pepperdine. All rights reserved

Questions?

Copyright 2017 Kirk Pepperdine. All rights reserved

