
Copyright 2017 Kirk Pepperdine. All rights reserved

JPDM, A Structured
approach To

Performance Tuning

Copyright 2017 Kirk Pepperdine. All rights reserved

Java Performance Tuning Workshops

About Me

Co-Founded jClarity

Kodewerk Ltd Performance Consulting

Copyright 2017 Kirk Pepperdine. All rights reserved

Disclaimer

Copyright 2017 Kirk Pepperdine. All rights reserved

Our Typical Customer

Application isn’t performing to project sponsors expectations

users wait for minutes for the application to respond

Copyright 2017 Kirk Pepperdine. All rights reserved

Our Typical Customer

Application isn’t performing to project sponsors expectations

users wait for minutes for the application to respond

Copyright 2017 Kirk Pepperdine. All rights reserved

Looks like a database problem, we need to migrate to

[buzzname goes here]

Developers Get Involved

StringBuffer is being used all over the place…

We need to change it to StringBuilder

Copyright 2017 Kirk Pepperdine. All rights reserved

where the
@$*%! is the

problem?

Copyright 2017 Kirk Pepperdine. All rights reserved

Managers Get Involved

Form a tiger team

Copyright 2017 Kirk Pepperdine. All rights reserved

What is a Tiger Team?

A team of specialists in a particular field
brought together to work on specific tasks.

Copyright 2017 Kirk Pepperdine. All rights reserved

What is a Tiger Team?

A forum where experts from different
disciplines come together to express an

opinion that defends their specialty

Copyright 2017 Kirk Pepperdine. All rights reserved

Measure Don’t Guess®

Copyright 2017 Kirk Pepperdine. All rights reserved

Why a System Model?

Help us to understand

what measures are important

defines requirements for tooling

provides a context for us to understand the measures

facilitate the definition of a diagnostic process

Java Performance Diagnostic Model (JPDM)

Copyright 2017 Kirk Pepperdine. All rights reserved

Where do Developers Live?

Copyright 2017 Kirk Pepperdine. All rights reserved

Application

Developers Live Here

Code (algorithms)

Copyright 2017 Kirk Pepperdine. All rights reserved

Application

JVM

Work in a virtualized
environment

Code (algorithms)

Managed Memory, Execution Engine

Developers Live Here

Copyright 2017 Kirk Pepperdine. All rights reserved

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

public class Software {

 public static void main(String[] args) {

 System.out.println(“Software is abstract”);

 }

}

Copyright 2017 Kirk Pepperdine. All rights reserved

Hardware is Real!

capacities

volume

throughput

clock speed

granularity

cache line, sector size

Copyright 2017 Kirk Pepperdine. All rights reserved

CPU

capacity : number of cores

number of units in ALU

size of caches

throughput : clock speed, CPI

bandwidth on various pipes (QPI)

granularity : cache line size

Copyright 2017 Kirk Pepperdine. All rights reserved

Memory

capacity : number of bytes of RAM

throughput : clock speed of BUS

tempered by bank cool of time

chunk size : cache line size

typically 8 reads per cache line

Copyright 2017 Kirk Pepperdine. All rights reserved

Disk

capacity : number of bytes of RAM

throughput : controller clock speed

~1 Bbit/sec (SATA ~3Gbits/sec)

granularity : disk sector (512 bytes)

other latencies

sweep arm speed

Copyright 2017 Kirk Pepperdine. All rights reserved

Network

capacity : 1 per network card

bandwidth : maximum volume of data
transferred per second (10^9 bits/sec)

throughput : depends on protocol
overheads

granularity : depends on protocol

tcp payload is typically 1500 bytes

Copyright 2017 Kirk Pepperdine. All rights reserved

Other Limits

Other hardware devices

eg, video, sound cards

GPU

Heat

Battery capacities

Copyright 2017 Kirk Pepperdine. All rights reserved

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks Reality

Abstract

meets

Copyright 2017 Kirk Pepperdine. All rights reserved

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

No

Dynamics

Copyright 2017 Kirk Pepperdine. All rights reserved

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

Add dynamicsActors
usage patterns

Copyright 2017 Kirk Pepperdine. All rights reserved

Question?

Which is faster?

a) Bubble sort
b) Quick sort

Copyright 2017 Kirk Pepperdine. All rights reserved

Hint

In Big O notation...
 - Bubble sort is N^2
 - Quick sort of Nlog(N)

Copyright 2017 Kirk Pepperdine. All rights reserved

However

bubble

quick

Copyright 2017 Kirk Pepperdine. All rights reserved

However

bubble

quick

Number of items

comes from the actors

Copyright 2017 Kirk Pepperdine. All rights reserved

Performance Tuning Methodology

If youombine

Based on the System model we just developed

hypothesis free

methodical

step wise process to arrive at a conclusion

Copyright 2017 Kirk Pepperdine. All rights reserved

Hardware Consumption

Actors drive the application

Application drives the JVM

JVM assisted by OS consumes Hardware

Hardware is consumed

function of how actors interact with application

function of how application is coded

consumption limited by capacity

pattern of consumption is important

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

Actors
usage patterns

Copyright 2017 Kirk Pepperdine. All rights reserved

Dominating Consumer

garbage collection logs

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

Actors
usage patterns

Activity that dominates how the CPU is
utilized

Determination dominator by analyzing

CPU counters

Garbage collection logs

Copyright 2017 Kirk Pepperdine. All rights reserved

Dominating Consumers

garbage collection logs

Application

JVM
Code (algorithms)

Managed Memory, Execution Engine

OS/Hardware
CPU, memory, disk I/O

network I/O, Locks

Actors
usage patterns

Application

JVM

None

System

Copyright 2017 Kirk Pepperdine. All rights reserved

sys cpu > ~10% of

user cpu

 user CPU ~= 100% memory efficient?

GC Logs

Application

JVMNone

System

system profiling: netstat, mpstat,

iostat, sar, strace, etc...

Thread starvation

Thread dump

app/CPU profiling

GC tuning, pool sizes,

collectors, ...

Memory profiling, size

frequency, life span,...

yes

yes yes

no

no

no

Analysis

Copyright 2017 Kirk Pepperdine. All rights reserved

Application

JVMNone

System

passi
vely

dominant

aggressivly
dominant

Expression of CPU Consumption

Copyright 2017 Kirk Pepperdine. All rights reserved

Application

JVMNone

System

Kernel time

Idle User time

Measuring Consumption

Copyright 2017 Kirk Pepperdine. All rights reserved

 r b swpd free buff cache si so bi bo in cs us sy id wa
 3 9 100 24496 11096 13267036 0 0 0 5 0 1 2 1 96 1
 3 2 100 23420 11088 13268328 0 0 0 0 77330 175352 17 26 39 17
 3 9 100 20836 11088 13270628 0 0 0 68 105118 227382 14 40 21 25
 8 4 100 23356 11080 13268272 0 0 0 0 80062 164387 12 30 29 30
 7 7 100 23180 11084 13267068 0 0 0 72 98353 234851 15 43 28 15
11 2 100 25820 11088 13263676 0 0 0 120 100749 214921 11 42 17 30
13 1 100 22316 11088 13267176 0 0 0 0 103878 246723 16 56 19 9
 4 3 100 21824 11088 13269140 0 0 0 0 48625 97288 15 16 9 60
11 2 100 20932 11080 13269808 0 0 0 0 110760 236774 14 41 24 20
 1 12 100 23624 11084 13267488 0 0 0 204 69117 148611 15 27 25 33
 7 5 100 24996 11096 13267476 0 0 0 164 24495 48552 13 10 30 48
 1 12 100 20792 11096 13271872 0 0 0 0 25659 54331 8 9 26 56
 6 8 100 21984 11080 13269920 0 0 0 20 46309 101404 16 18 51 15
 4 9 100 22764 11080 13268956 0 0 16 0 88553 229557 17 35 38 11

Copyright 2017 Kirk Pepperdine. All rights reserved

Benchmark benchmark = new Benchmark()

benchmark.configure();

performance = benchmark.baseline(application);

user.setHappy(performance.meets(requirements));

while ((! user.isHappy()) && (user.hasMoney())) {

 Profiler profiler = performance.identifyDominatingConsumer();

 profilingResults = benchmark.profile(profiler);

 application.fixUsing(profilingResults);

 while (application.failsQA())

 application.debug();

 performance = benchmark.baseline(application);

 user.setHappy(performance.meets(requirements));

}

Benchmarking Process

Copyright 2017 Kirk Pepperdine. All rights reserved

Actors
Test harness

Application

JVM

Hardware/OS

Data

Monitoring

Things We Need

Copyright 2017 Kirk Pepperdine. All rights reserved

Time for a demo

Copyright 2017 Kirk Pepperdine. All rights reserved

sys cpu > 10% of

user cpu

System

system profiling: netstat, mpstat,

iostat, sar, strace, etc...

yes

Question?

Why the high level of kernel CPU?

Observations

no disk I/O, network activity or video

context switching due to lock contention?

Monitor threads with VisualVM

Dominating Consumer #1

Copyright 2017 Kirk Pepperdine. All rights reserved

sys cpu > 10% of

user cpu

 user CPU ~= 100% memory efficient?

GC Logs

JVM

Memory profiling, size

frequency, life span,...

yes

no

no

Question?

Why the high memory consumption

Profile object creation

Dominating Consumer #2

Copyright 2017 Kirk Pepperdine. All rights reserved

Need to gather clear requirements

Develop a sound benchmarking environment

get better measurements

Always identify dominating consumer

refocus teams on problems that matter

What About Our Customer

Copyright 2017 Kirk Pepperdine. All rights reserved

Questions?

