
Write Barriers in Garbage
First Garbage Collector

-By Monica Beckwith
Code Karam LLC

@mon_beck; monica@codekaram.com

1

mailto:monica@codekaram.com

©2017 CodeKaram

About me

• Java performance engineer

• I am working as a consultant and an instructor

• I have worked with Oracle, Sun, AMD …

• I used to work in the capacity of G1 GC
performance lead @Oracle.

2

©2017 CodeKaram

Agenda
• Heap regions and additional data structures

• RSets

• Barriers

• Concurrent refinement

• G1 GC Stages

• Concurrent marking in G1 GC

• Pre-write barrier

• SATB algorithm

3

Regionalized Heap

4

©2017 CodeKaram

Traditional Java Heap

5

Contiguous Java Heap

Eden S0 S1

Old
Generation

©2017 CodeKaram

Garbage First GC - Heap
Regions

6

Contiguous Java Heap

Free
Region

Non-Free
Region

©2017 CodeKaram

G1 GC Heap Regions

• Young Regions - Regions that house objects in
the Eden and Survivor Spaces

• Old Regions - Regions that house objects in the
Old generation.

• Humongous Regions - Regions that house
Humongous Objects.

7

Additional Data
Structures

8

©2017 CodeKaram

G1 GC Collection Set &
Remembered Sets

• Additional data structure to help with
maintenance and collection

• Add a slight footprint overhead (~5%)

9

Remembered Sets
(RSets)

10

©2017 CodeKaram

• Maintains and tracks incoming references into its
region

• old-to-young references

• old-to-old references

11

Remembered Sets

©2017 CodeKaram

• Remembered sets have varying granularity
based on the “popularity” of objects or regions.

12

Remembered Sets

©2017 CodeKaram

Remembered Sets

• Different granularities:

• sparse per-region-table (PRT)

• fine-grained PRT

• coarse-grained bitmap

13

©2017 CodeKaram14

Figure 2.3 Remembered sets with incoming object references

RSet Maintenance:
Barriers + Refinement

Threads

15

Write Barrier

16

©2017 CodeKaram

Post-Write Barrier

Consider the following assignment:

object.field = some_other_object

G1 GC will issue a write barrier after the reference
is updated, hence the name.

17

©2017 CodeKaram

Post-Write Barrier
G1 GC filters the need for a barrier by way of a
simple check as explained below:

(&object.field XOR &some_other_object)
>> RegionSize

If the check evaluates to zero, a barrier is not
needed.

If the check != zero, G1 GC enqueues the card in
the update log buffer

18

Concurrent
Refinement Threads

19

©2017 CodeKaram

Concurrent Refinement
Threads

• The refinement threads will scan cards in the
filled update log buffers to update the RSets for
their corresponding regions.

• The refinement threads are always active

• G1 GC deploys them in a tiered manner to keep
up with the filled buffers

20

©2017 CodeKaram

Concurrent Refinement
Threads

• Mutator threads can be enlisted to help with
processing of filled buffers.

• Avoid this scenario, since the Java application
will be halted until the filled buffers are
processed!

21

G1 GC Stages

22

A Young Collection

23

©2017 CodeKaram

G1 GC Stages - Young
Collection

24

• When young regions are full and no further
allocations can happen

• Need to start a stop-the-world collection

• Age objects in survivor regions

• Promote aged objects into the old regions

Marking Threshold

25

©2017 CodeKaram

Initiating Heap Occupancy
Percent

26

• Threshold to start a marking cycle to identify
candidate old regions for collection during a
mixed/incremental collection

• When old generation occupancy crosses this
adaptive threshold, a marking cycle can start

Marking

27

©2017 CodeKaram

Stages of Marking

28

• Initial-mark

• Root region scan

• Concurrent mark

• Remark/ Final mark

• Cleanup

A Mixed Collection

29

©2017 CodeKaram

G1 GC Stages - Mixed
Collection

30

• When candidate old regions are available and the potential of
recovered space is over the (internal) reclaimable threshold

• This is a stop-the-world collection

• All regions in the young generation are included in this
collection

• Candidate old regions are added based on the
reclaimable space and other min/max thresholds

• Can have multiple mixed collection pauses based on the
total old regions identified and a (internal) count target.

G1 GC Pause
Histogram

31

©2017 CodeKaram

The Garbage First Collector
- Pause Histogram

32

Pa
us

e
tim

e
in

 m
illi

se
co

nd
s

0

30

60

90

120

Timestamps
3415 3416.3 3417.2 3418.4 3419 3422 3423.4 3432.2 3433.2 3436.8 3437.6 3438.9 3440

Young Collection Initial Mark Remark Cleanup Mixed Collection

Initiating Heap Occupancy Percent

Concurrent Marking in
G1 GC

33

©2017 CodeKaram

Recap: Stages of Marking

34

• Initial-mark

• Root region scan

• Concurrent mark

• Remark/ Final mark

• Cleanup

©2017 CodeKaram

Marking Highlights

• Employs ‘Snapshot At The Beginning (SATB)
algorithm

• Incremental and concurrent marking
algorithm.

• A pre-write barrier is needed to gather the
snapshot

35

SATB Algorithm For
Concurrent & Incremental

Marking

36

©2017 CodeKaram37

A Java Heap

End

Bottom

~ ~ ~ ~

©2017 CodeKaram38

A Java Heap With Previous Bitmap

End

Bottom

Previous Bitmap

~ ~ ~ ~

©2017 CodeKaram39

A Java Heap (Showing PTAMS) With Previous
Bitmap

End

Bottom

Previous Bitmap

PTAMS

Top

~ ~ ~ ~

©2017 CodeKaram40

A Java Heap (Showing PTAMS) With Previous
Bitmap

End

Bottom

Previous Bitmap

PTAMS

Objects Are
Already
Marked

Top

~ ~ ~ ~

©2017 CodeKaram41

A Java Heap (Showing PTAMS + NTAMS) With
Previous Bitmap

Top

Bottom

Next Bitmap

PTAMS

NTAMS

End
~ ~ ~ ~

©2017 CodeKaram42

Same Java Heap During Concurrent Marking

End

Bottom

PTAMS

NTAMS
New Objects Are

Allocated In This
SpaceTop ~ ~ ~ ~

Next Bitmap

©2017 CodeKaram43

Bottom

PTAMS

NTAMS

End

Same Java Heap During Concurrent Marking

Top

Objects Will Be
Considered

Implicitly Live

~ ~ ~ ~

Next Bitmap

Pre-Write Barrier

44

©2017 CodeKaram

Pre-Write Barrier

• To record the previous value of the reference
fields of objects that were reachable at the start
of marking + were a part of the snapshot.

• Prevents those objects from being overwritten by
the mutator thread

• Mutator thread logs the previous value of the
pointer in an SATB buffer

45

©2017 CodeKaram

Pre-Write Barrier -
Pseudo Code

if (marking_is_active) {

pre_val:= x.f;

if (pre_val:= NULL) {

satb_enqueue(pre_val);

}

}

46

©2017 CodeKaram47

End

Bottom

PTAMS

NTAMS

All Live Objects Are
Marked

Next Bitmap

Top ~ ~ ~ ~

Same Java Heap At The End Of Remark Pause

©2017 CodeKaram48

Same Java Heap At The End Of Remark Pause

End

Bottom

PTAMS

NTAMS

Top

All Objects Are
Implicitly Live

~ ~ ~ ~

Next Bitmap

©2017 CodeKaram49

Same Java Heap During Cleanup

End

Bottom

PTAMS

Top ~ ~ ~ ~

Previous Bitmap

©2017 CodeKaram

References and Additional
Reading

• D. L. Detlefs, C. H. Flood, S. Heller, and T.
Printezis. Garbage-First Garbage Collection.

• C. Hunt, M. Beckwith, P. Parhar, B. Rutisson.
Java Performance Companion.

50

