
Write Barriers in Garbage 
First Garbage Collector

-By Monica Beckwith 
Code Karam LLC 

@mon_beck; monica@codekaram.com

1

mailto:monica@codekaram.com


©2017 CodeKaram

About me

• Java performance engineer 

• I am working as a consultant and an instructor 

• I have worked with Oracle, Sun, AMD … 

• I used to work in the capacity of G1 GC 
performance lead @Oracle.
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Agenda
• Heap regions and additional data structures 

• RSets 

• Barriers 

• Concurrent refinement 

• G1 GC Stages 

• Concurrent marking in G1 GC 

• Pre-write barrier 

• SATB algorithm
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Regionalized Heap
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Traditional Java Heap
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Garbage First GC - Heap 
Regions
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G1 GC Heap Regions

• Young Regions - Regions that house objects in 
the Eden and Survivor Spaces 

• Old Regions - Regions that house objects in the 
Old generation. 

• Humongous Regions - Regions that house 
Humongous Objects.
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Additional Data 
Structures
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G1 GC Collection Set & 
Remembered Sets

• Additional data structure to help with 
maintenance and collection 

• Add a slight footprint overhead (~5%)
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Remembered Sets 
(RSets)
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• Maintains and tracks incoming references into its 
region 

• old-to-young references 

• old-to-old references
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• Remembered sets have varying granularity 
based on the “popularity” of objects or regions.
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Remembered Sets

• Different granularities: 

• sparse per-region-table (PRT) 

• fine-grained PRT 

• coarse-grained bitmap
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Figure 2.3 Remembered sets with incoming object references



RSet Maintenance: 
Barriers + Refinement 

Threads
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Write Barrier
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Post-Write Barrier

Consider the following assignment: 

object.field = some_other_object 

G1 GC will issue a write barrier after the reference 
is updated, hence the name.
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Post-Write Barrier
G1 GC filters the need for a barrier by way of a 
simple check as explained below: 

(&object.field XOR &some_other_object) 
>> RegionSize 

If the check evaluates to zero, a barrier is not 
needed. 

If the check != zero, G1 GC enqueues the card in 
the update log buffer
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Concurrent 
Refinement Threads
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Concurrent Refinement 
Threads

• The refinement threads will scan cards in the 
filled update log buffers to update the RSets for 
their corresponding regions. 

• The refinement threads are always active 

• G1 GC deploys them in a tiered manner to keep 
up with the filled buffers
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Concurrent Refinement 
Threads

• Mutator threads can be enlisted to help with 
processing of filled buffers. 

• Avoid this scenario, since the Java application 
will be halted until the filled buffers are 
processed!
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G1 GC Stages
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A Young Collection
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G1 GC Stages - Young 
Collection
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• When young regions are full and no further 
allocations can happen  

• Need to start a stop-the-world collection 

• Age objects in survivor regions 

• Promote aged objects into the old regions



Marking Threshold
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Initiating Heap Occupancy 
Percent
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• Threshold to start a marking cycle to identify 
candidate old regions for collection during a 
mixed/incremental collection 

• When old generation occupancy crosses this 
adaptive threshold, a marking cycle can start



Marking
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Stages of Marking
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• Initial-mark 

• Root region scan 

• Concurrent mark 

• Remark/ Final mark 

• Cleanup



A Mixed Collection
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G1 GC Stages - Mixed 
Collection
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• When candidate old regions are available and the potential of 
recovered space is over the (internal) reclaimable threshold 

• This is a stop-the-world collection 

• All regions in the young generation are included in this 
collection 

• Candidate old regions are added based on the 
reclaimable space and other min/max thresholds 

• Can have multiple mixed collection pauses based on the 
total old regions identified and a (internal) count target.



G1 GC Pause 
Histogram
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The Garbage First Collector 
- Pause Histogram
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Concurrent Marking in 
G1 GC
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Recap: Stages of Marking
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• Initial-mark 

• Root region scan 

• Concurrent mark 

• Remark/ Final mark 

• Cleanup
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Marking Highlights

• Employs ‘Snapshot At The Beginning (SATB) 
algorithm 

• Incremental and concurrent marking 
algorithm. 

• A pre-write barrier is needed to gather the 
snapshot
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SATB Algorithm For 
Concurrent & Incremental 

Marking
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A Java Heap
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A Java Heap With Previous Bitmap
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A Java Heap (Showing PTAMS) With Previous 
Bitmap
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A Java Heap (Showing PTAMS + NTAMS) With 
Previous Bitmap
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Same Java Heap During Concurrent Marking
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Pre-Write Barrier
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Pre-Write Barrier

• To record the previous value of the reference 
fields of objects that were reachable at the start 
of marking + were a part of the snapshot. 

• Prevents those objects from being overwritten by 
the mutator thread 

• Mutator thread logs the previous value of the 
pointer in an SATB buffer
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Pre-Write Barrier -  
Pseudo Code

if (marking_is_active) { 

pre_val:= x.f; 

if (pre_val:= NULL) { 

satb_enqueue(pre_val); 

} 

}
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Same Java Heap At The End Of Remark Pause
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Same Java Heap During Cleanup
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