
© Copyright Azul Systems 2017

© Copyright Azul Systems 2015

@speakjava

55 New Features
In JDK 9

Simon Ritter
Deputy CTO, Azul Systems

1

© Copyright Azul Systems 2017

Major Features

© Copyright Azul Systems 2017

Java Platform Module System (JPMS)
§ The core Java libraries are now a set of modules (JEP 220)

– 97 modules: 28 Java SE, 8 JavaFX, 59 JDK, 2 Oracle
§ Most internal APIs now encapsulated (JEP 260)

– sun.misc.Unsafe
– Some can be used with command line options

§ --add-exports
§ --add-opens

§ Modular source code (JEP 201)
– JDK source code re-organised to support modules

3

© Copyright Azul Systems 2017

Migrating Applications to JPMS
§ Initially, leave everything on the classpath
§ Anything on the classpath is in the unnamed module

– All packages are exported
– The unnamed module depends on all modules

§ Migrate to modules as required
– Try automatic modules
– Move existing jar files from classpath to modulepath

4

© Copyright Azul Systems 2017

Reversing Encapsulation
§ "The Big Kill Switch" to turn off encapsulation

– --illegal-access
§ permit: Warning for first use of an encapsulated API
§ warn: Warning for every use of an encapsulated API
§ debug: Warning and stack trace for every use
§ deny: No access to encapsulated APIs

5

© Copyright Azul Systems 2017

Reversing Encapsulation
§ Allowing direct access to encapsulated APIs

– --add-exports

§ Allowing reflective access to encapsulated APIs
– --add-opens

6

--add-exports java.management/com.sun.jmx.remote.internal=mytest
--add-exports java.management/sun.management=ALL-UNNAMED

--add-opens java.base/java.util=ALL-UNNAMED

© Copyright Azul Systems 2017

jlink: The Java Linker (JEP 282)

7

Modular run-time
image

…confbin

jlink

$ jlink --modulepath $JDKMODS \
--addmods java.base –output myimage

$ myimage/bin/java –-list-modules
java.base@9

jmods

© Copyright Azul Systems 2017

jlink: The Java Linker (JEP 282)

$ jlink --module-path $JDKMODS:$MYMODS \
--addmods com.azul.app –-output myimage

$ myimage/bin/java –-list-modules
java.base@9
java.logging@9
java.sql@9
java.xml@9
com.azul.app@1.0
com.azul.zoop@1.0
com.azul.zeta@1.0

© Copyright Azul Systems 2017

Factory Methods For Collections (JEP 269)

§ Static factory methods on List, Set and Map interfaces
– Create compact, immutable instances
– 0 to 10 element overloaded versions
– Plus varargs version for arbitary number of elements

9

Set<String> set = new HashSet<>();
set.add("a");
set.add("b");
set.add("c");
set = Collections.unmodifiableSet(set);

Set<String> set = Set.of("a", "b", "c");

© Copyright Azul Systems 2017

Stream Enhancements
§ dropWhile()/takeWhile()

– Like skip/limit but uses Predicate rather than number
§ Improved iterate

– Enables a stream to be more like a for loop
§ Parallel Files.lines()

– Memory mapped, divided on line break boundary
§ Stream from Optional

– Stream of zero or one element

10

© Copyright Azul Systems 2017

Multi-Release Jar Files (JEP 238)
§ Multiple Java release-specific class files in a single archive

§ Enhance jar tool to create multi-release files

§ Support multi-release jar files in the JRE

– Classloaders

– JarFile API

§ Enhance other tools

– javac, javap, jdeps, etc.

§ Also, modular jar files

11

© Copyright Azul Systems 2017

REPL: jshell (JEP 222)
§ Read-Eval-Print Loop

– Simple prototyping

12

© Copyright Azul Systems 2017

Concurrency Updates (JEP 266)
§ Reactive streams publish-subscribe framework
§ Asynchronous, non-blocking
§ Flow

– Publisher, Subscriber, Processor, Subscription
§ SubmissionPublisher utility class

– Asynchronously issues items to current subscribers
– Implements Flow.Processor

13

© Copyright Azul Systems 2017

Concurrency Updates (JEP 266)
§ CompletableFuture additions

– Delays and timeouts
– Better support for sub-classing
– New static utility methods

§ minimalCompletionStage
§ failedStage
§ newIncompleteFuture
§ failedFuture

14

© Copyright Azul Systems 2017

Enhanced Deprecation (JEP 277)
§ We have @deprecated and @Deprecated

– Used to cover too many situations
§ New methods in Deprecated annotation

– boolean forRemoval()
§ Will this ever be removed?

– String since()
§ JDK Version when this was deprecated

§ Several @Deprecated tags added
– java.awt.Component.{show(),hide()} removed

§ jdeprscan command to produce report
15

© Copyright Azul Systems 2017

Milling Project Coin (JEP 213)
§ Single underscore no longer valid as identifier

– Ready for use in Lambdas
§ Private methods in interfaces

– Multiple inheritance of behaviour makes this logical
§ Effectively final variables in try-with-resources

– Variables from outside try block
§ Allow @SafeVarargs on private instance methods

– In addition to constructors, final and static methods
§ Diamond operator with anonymous classes

– Extending type inference further
16

© Copyright Azul Systems 2017

Standards

© Copyright Azul Systems 2017

Updating To Relevant Standards
§ Unicode 7.0/8.0 (JEP 227/267)

– 7.0: 2,834 new characters
– 8.0: 7,716 new characters

§ PKCS12 key stores by default (JEP 229)
– Move from JKS to PKCS12

§ HTML5 javadocs (JEP 224)
– Flashier documentation

§ SHA 3 hash algorithms (JEP 287)
– Keeping ahead of the hackers

18

} seriously!

© Copyright Azul Systems 2017

Smaller Features
§ UTF-8 property files (JEP 226)

– ResourceBundle API updated to load these files
§ DRBG-Based SecureRandom implementations (JEP 273)

– Deterministic Random Bit Generator
§ XML Catalog API (JEP 268)

– Supports OASIS XML catalog API v1.1
– For use with JAXP

19

© Copyright Azul Systems 2017

Inside The JVM

© Copyright Azul Systems 2017

Default Collector: G1 (JEP 248)
§ G1 now mature in development
§ Designed as low-pause collector
§ Concurrent class unloading (JEP 156) JDK8u40

– Useful enhancement to improve G1
§ Still falls back to full compacting collection

– Pause times proportional to heap size
– Use Zing from Azul for truly pauseless

21

© Copyright Azul Systems 2017

Better String Performance
§ Compact strings (JEP 254)

– Improve the space efficiency of the String class

– Not using alternative encodings

§ Store interned strings in CDS archive (JEP 250)

– Share String and char[] objects between JVMs

§ Indify String concatenation (JEP 280)

– Change from static String-concatenation bytecode
sequence to invokedynamic

– Allow future performance improvements

22

© Copyright Azul Systems 2017

Marlin Graphics Renderer (JEP 265)
§ Replaces Pisces open-source renderer

– Comparable performance to closed-source Ductus

23

© Copyright Azul Systems 2017

Smaller Features
§ Improve contended locking (JEP 143)

– Field reordering/cache line alignment
§ Leverage CPU instructions for GHASH and RSA (JEP 246)

– Up to 150x better performance (for specific tests)
§ Update JavaFX to newer version of GStreamer (JEP 257)

– Media class
– Better security, stability and performance

24

© Copyright Azul Systems 2017

Smaller Features
§ Segmented Code Cache (JEP 197)

– Separate non-method, profiled and non-profiled code
§ Unified JVM logging (JEP 158)

– Common logging system for all components of JVM
§ Unified GC logging (JEP 271)

– Re-implement GC logging using unified JVM logging
– Many command line options changed

25

© Copyright Azul Systems 2017

Specialised

© Copyright Azul Systems 2017

Spin-Wait Hints (JEP 285)
§ Proposed by Azul

– We rock!
§ A new method for Thread class

– onSpinWait()
§ Enables the x86 PAUSE instruction to be used from Java

code
– If available
– Ignored otherwise
– Improved performance for things like Disruptor

27

© Copyright Azul Systems 2017

Variable Handles (JEP 193)
§ Replacement for parts of sun.misc.Unsafe
§ Fence operations

– Fine grained memory control
– Atomic operations on object fields and array elements

§ VarHandle
– compareAndExchange(), compareAndSet()
– getAndAdd(), getAndSet()
– acquireFence(), releaseFence()

28

© Copyright Azul Systems 2017

AOT Compilation (JEP 295)
§ Experimental feature in JDK 9

– -XX:+UnlockExperimentalVMOptions
– Only the java.base module has AOT version

§ jaotc command
– jaotc --output libMyStuff.so MyStuff.jar

§ JVM uses AOT code to replace interpreted
– Can recompile with C1 to collect further profiling data
– Recompile with C2 for optimum performance

29

© Copyright Azul Systems 2017

Smaller Features
§ Compiler control (JEP 165)

– Control of C1/C2 JIT, not javac

– Directive file

– Runtime changes via jcmd
§ Process API updates (JEP 102)

– Native process (Process/ProcessHandle)

– More information: pid, arguments, start time, CPU usage,
name

– Control subject to security manager permissions

30

© Copyright Azul Systems 2017

Housekeeping

© Copyright Azul Systems 2017

New Version String Format (JEP 223)
§ Old

– Limited update release/Critical patch update (CPU)

– Download: Java SE 8u131, java -version: jdk1.8.0_131

– Which has more patches, JDK 7u55 or JDK 7u60?

§ New

– JDK $MAJOR.$MINOR.$SECURITY.$PATCH
– Easy to understand by humans and apps

– Semantic versioning

32

© Copyright Azul Systems 2017

New Version String Format (JEP 223)
§ Old

– Limited update release/Critical patch update (CPU)

– Download: Java SE 8u131, java -version: jdk1.8.0_131

– Which has more patches, JDK 7u55 or JDK 7u60?

§ New, new

– JDK $YEAR.$MONTH
– New 6 month release cadence, Mar/Sep

– Next version would be JDK 18.3, then 18.9

33

© Copyright Azul Systems 2017

New Version String Format (JEP 322)
§ Old

– Limited update release/Critical patch update (CPU)

– Download: Java SE 8u131, java -version: jdk1.8.0_131

– Which has more patches, JDK 7u55 or JDK 7u60?

§ New, new, new

– JDK $FEATURE.$INTERIM.$UPDATE.$PATCH
– Back to JDK 10 and JDK 11

§ Or JDK 10.0.1.1

34

© Copyright Azul Systems 2017

JDK/JRE File Structure (JEP 220)

35

bin

Pre-JDK 9 JDK 9

lib
tools.jar

jre

bin
rt.jar
lib

libconfbin

jre directory
tools.jar
rt.jar

jmods

© Copyright Azul Systems 2017

Smaller Features
§ Searchable API documentation (JEP 225)

– Finally! Java API docs enter the 21st century

§ Annotations pipeline 2.0 (JEP 217)

– Repeating, type and Lambda annotations in JDK 8

– Redesign of javac annotation pipeline

§ Parser API for Nashorn (JEP 236)

– API for Nashorn abstract tree syntax

– Nashorn implements ECMAScript 5.1 spec.

36

© Copyright Azul Systems 2017

General Clean Up
§ Disable SHA-1 certificates (JEP 288)

– Mostly
§ In some situations SHA-1 certs. will still be accepted

§ Deprecate the Applet API (JEP 289)
– Not many people still use this

37

© Copyright Azul Systems 2017

Removed From JDK 9
§ Six deprecated APIs (JEP 162)

– {Add,Remove}ActionListener
– Pack200, Unpack200 and LogManager

§ com.sun.security.auth.callback.DialogCallbackHandle
r
– Part of JAAS

§ JRE version selection command line option (JEP 231)
– -version:release no longer accepted
– -version still works

§ Demos and samples (JEP 298)
– Out-of-date, unmaintained 38

© Copyright Azul Systems 2017

Removed From JDK 9
§ JVM TI hprof agent (JEP 240)

– Only ever intended as a demo of JVM TI
– Useful features now in other tools (like jmap)

§ Remove the jhat tool (JEP 241)
– Experimental tool added in JDK 6
– Unsupported
– Better heap visualisation tools available

39

© Copyright Azul Systems 2017

Removed GC Options (JEP 214)
§ Deprecated in JDK 8 (JEP 173)

40

DefNew + CMS : -XX:-UseParNewGC -XX:+UseConcMarkSweepGC
ParNew + SerialOld : -XX:+UseParNewGC
ParNew + iCMS : -Xincgc
ParNew + iCMS : -XX:+CMSIncrementalMode -XX:+UseConcMarkSweepGC
DefNew + iCMS : -XX:+CMSIncrementalMode -XX:+UseConcMarkSweepGC

-XX:-UseParNewGC
CMS foreground : -XX:+UseCMSCompactAtFullCollection
CMS foreground : -XX:+CMSFullGCsBeforeCompaction
CMS foreground : -XX:+UseCMSCollectionPassing

© Copyright Azul Systems 2017

Summary

© Copyright Azul Systems 2017

JDK 9
§ Big new feature is modularity

– Covers numerous different areas
– Modules, jink, etc.

§ Smaller developer features
– New APIs for streams
– Reactive API
– REPL/jshell

§ Many smaller performance/standards features
§ Time to start testing, if you’re not already

43

© Copyright Azul Systems 2017

Zulu Java
§ Azul’s binary distribution of OpenJDK

– Passes all TCK tests
– Multi-platform (Windows, Linux, Mac)
– FREE!

§ Happy to sell you support, including older versions
§ JDK 6, 7, 8 and 9

44

www.zulu.org/download

© Copyright Azul Systems 2017

© Copyright Azul Systems 2015

@speakjava

Thank You

Simon Ritter
Deputy CTO, Azul Systems

45

