
How to Properly Blame Things for Causing Latency
An introduction to Distributed Tracing and Zipkin

@adrianfcole
works at Pivotal
works on Zipkin

Introduction

introduction

understanding latency

distributed tracing

zipkin

demo

propagation

wrapping up

@adrianfcole#zipkin

@adrianfcole
• spring cloud at pivotal
• focused on distributed tracing
• helped open zipkin

Understanding Latency

introduction

understanding latency

distributed tracing

zipkin

demo

propagation

wrapping up

@adrianfcole#zipkin

Understanding Latency

Logging - recording events
Metrics - data combined from measuring events
Tracing - recording events with causal ordering

Unifying theory: Everything is based on events

credit: coda hale

Different tools

Tracing
Request
scoped

Logging
Events

Metrics
Aggregatable*

credit: peter bourgon

Different focus

Let’s use latency to compare a few tools

• Log - event (response time)

• Metric - value (response time)

• Trace - tree (response time)

Logs show response time

[20/Apr/2017:14:19:07 +0000] "GET / HTTP/1.1" 200
7918 "" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:
1.8.1.11) Gecko/20061201 Firefox/2.0.0.11 (Ubuntu-
feisty)" **0/95491**

Look! this request took 95 milliseconds!

Metrics show response time

Is 95 milliseconds slow?
How fast were most
requests at 14:19?

What caused the request to take 95 milliseconds?

Traces show response time

Wire Send

Store

Async Store

Wire Send

POST /things

POST /things

▣────────────95491 microseconds───────────────────────────▣

 ▣──────────── 557231 microseconds───────────▣

Log - easy to “grep”, manually read

Metric - can identify trends

Trace - identify cause across services

First thoughts….

You can link together: For example add trace ID to logs

Distributed Tracing

introduction

understanding latency

distributed tracing

zipkin

demo

propagation

wrapping up

@adrianfcole#zipkin

Distributed Tracing commoditizes knowledge

Distributed tracing systems collect end-to-end latency graphs
(traces) in near real-time.

You can compare traces to understand why certain requests
take longer than others.

Distributed Tracing Vocabulary

A Span is an individual operation that took place. A span contains timestamped
events and tags.

A Trace is an end-to-end latency graph, composed of spans.

Tracers records spans and passes context required to connect them into a trace

Instrumentation uses a tracer to record a task such as an http request as a span

wombats:10.2.3.47:8080

A Span is an individual operation

Server Received a Request

POST /things

Server Sent a Response
Events

Tags

Operation

remote.ipv4 1.2.3.4
http.request-id abcd-ffe
http.request.size 15 MiB
http.url …&features=HD-uploads

Tracing is logging important events

Wire Send Store

Async StoreWire Send

POST /things

POST /things

Tracers record time, duration and host

Wire Send Store

Async StoreWire Send

POST /things

POST /things

Tracers don’t decide what to record, instrumentation does.. we’ll get to that

Tracers send trace data out of process

Tracers propagate IDs in-band,
 to tell the receiver there’s a trace in progress

Completed spans are reported out-of-band,
 to reduce overhead and allow for batching

Tracer == Instrumentation?

A tracer is a utility library, similar to metrics or logging libraries.
It is a mechanism uses to trace an operation. Instrumentation is
the what and how.

For example, instrumentation for ApacheHC and OkHttp record
similar data with a tracer. How they do that is library specific.

Instrumentation
decides what to record

Instrumentation decides
how to propagate state

Instrumentation is
usually invisible to users

Tracing affects your production requests

Tracing affects your production requests, causing size and latency overhead. Tracers are
carefully written to not cause applications to crash. Instrumentation is carefully written to
not slow or overload your requests.

 - Tracers propagate structural data in-band, and the rest out-of-band

 - Instrumentation has data and sampling policy to manage volume

 - Often, layers such as HTTP have common instrumentation and/or models

Tracing Systems are Observability Tools

Tracing systems collect, process and present data reported by tracers.

 - aggregate spans into trace trees

 - provide query and visualization focused on latency

 - have retention policy (usually days)

Protip: Tracing is not just for latency

Some wins unrelated to latency

 - Understand your architecture

 - Find who’s calling deprecated services

 - Reduce time spent on triage

Zipkin

introduction

understanding latency

distributed tracing

zipkin

demo

propagation

wrapping up

@adrianfcole#zipkin

Zipkin is a distributed tracing system

Zipkin lives in GitHub

Zipkin was created by Twitter in 2012 based on the Google Dapper
paper. In 2015, OpenZipkin became the primary fork.

OpenZipkin is an org on GitHub. It contains tracers, OpenApi spec,
service components and docker images.

https://github.com/openzipkin

https://github.com/openzipkin

Zipkin Architecture

Amazon
Azure

Docker
Google

Kubernetes
Mesos
Spark

Tracers report spans HTTP or Kafka.

Servers collect spans, storing them
in MySQL, Cassandra, or
Elasticsearch.

Users query for traces via Zipkin’s
Web UI or Api.

https://github.com/openzipkin/zipkin-aws
https://github.com/openzipkin/zipkin-azure
https://github.com/openzipkin/docker-zipkin
https://github.com/GoogleCloudPlatform/stackdriver-zipkin
https://github.com/fabric8io/kubernetes-zipkin
https://github.com/elodina/zipkin-mesos-framework
https://github.com/openzipkin/zipkin-sparkstreaming

Zipkin has starter architecture

Tracing is new for a lot of
folks.

For many, the MySQL option
is a good start, as it is familiar.

services:
 storage:
 image: openzipkin/zipkin-mysql
 container_name: mysql
 ports:
 - 3306:3306
 server:
 image: openzipkin/zipkin
 environment:
 - STORAGE_TYPE=mysql
 - MYSQL_HOST=mysql
 ports:
 - 9411:9411
 depends_on:
 - storage

Zipkin can be as simple as a single file

$ curl -SL 'https://search.maven.org/remote_content?g=io.zipkin.java&a=zipkin-server&v=LATEST&c=exec' > zipkin.jar
$ SELF_TRACING_ENABLED=true java -jar zipkin.jar

 ** **
 * *
 ** **
 ** **
 ** **
 ** **

 **** ****
 ****** **** ***
 **
 ******* **** ***
 **** ****
 **
 **

 ***** ** ***** ** ** ** ** **
 ** ** ** * *** ** **** **
 ** ** ***** **** ** ** ***
 ****** ** ** ** ** ** ** **

:: Powered by Spring Boot :: (v1.5.4.RELEASE)

2016-08-01 18:50:07.098 INFO 8526 --- [main] zipkin.server.ZipkinServer : Starting ZipkinServer on acole with PID 8526 (/Users/acole/oss/sleuth-webmvc-
example/zipkin.jar started by acole in /Users/acole/oss/sleuth-webmvc-example)
—snip—

$ curl -s localhost:9411/api/v2/services|jq .
[
 "gateway"
]

How data gets to
Zipkin —>

Looks easy right?

Brave: the most popular Zipkin Java tracer

• Brave - OpenZipkin’s java library and instrumentation
• Layers under projects like Ratpack, Dropwizard, Play

• Spring Cloud Sleuth - automatic tracing for Spring Boot
• Includes many common spring integrations
• Starting in version 2, Sleuth is a layer over Brave!

c, c#, erlang, javascript, go, php, python, ruby, too

Some notable open source tracing libraries

• OpenCensus - Observability SDK (metrics, tracing, tags)
• Most notably, gRPC’s tracing library
• Includes exporters in Zipkin format and B3 propagation format

• OpenTracing - trace instrumentation library api definitions
• Bridge to Zipkin tracers available in Java, Go and PHP

• SkyWalking - APM with a java agent developed in China
• Work in progress to send trace data to zipkin

Demo

introduction

understanding latency

distributed tracing

zipkin

demo

propagation

wrapping up

@adrianfcole#zipkin

A web browser calls a service that calls another.

Zipkin will show how long the whole operation took, as well how
much time was spent in each service.

Distributed Tracing across multiple apps

openzipkin/zipkin-js spring-cloud-sleuth

https://github.com/openzipkin/zipkin-js
https://cloud.spring.io/spring-cloud-sleuth/

JavaScript referenced in index.html fetches an api
request. The fetch function is traced via a Zipkin
wrapper.

zipkin-js JavaScript

openzipkin/zipkin-js-example

https://github.com/openzipkin/zipkin-js-example

Api requests are served by Spring Boot applications.
Tracing of these are automatically performed by Spring
Cloud Sleuth.

Spring Cloud Sleuth Java

openzipkin/sleuth-webmvc-example

https://github.com/openzipkin/sleuth-webmvc-example

Propagation

introduction

understanding latency

distributed tracing

zipkin

demo

propagation

wrapping up

@adrianfcole#zipkin

Under the covers, tracing code can be tricky

 // This is real code, but only one callback of Apache HC

 Span span = handler.nextSpan(req);
 CloseableHttpResponse resp = null;
 Throwable error = null;
 try (SpanInScope ws = tracer.withSpanInScope(span)) {
 return resp = protocolExec.execute(route, req, ctx, exec);
 } catch (IOException | HttpException | RuntimeException | Error e) {
 error = e;
 throw e;
 } finally {
 handler.handleReceive(resp, error, span);
 }

Timing correctly

Trace state

Error callbacks

Version woes

Instrumentation

Instrumentation record behavior of a request or a message.
Instrumentation is applied use of Tracer libraries.

They extract trace context from incoming messages, pass it
through the process, allocating child spans for intermediate
operations. Finally, they inject trace context onto outgoing
messages so the process can repeat on the other side.

Propagation

Instrumentation encode request-scoped state required for
tracing to work. Services that use a compatible context format
can understand their position in a trace.

Regardless of libraries used, tracing can interop via
propagation. Look at B3 and trace-context for example.

https://github.com/openzipkin/b3-propagation
https://github.com/TraceContext/tracecontext-spec

Propagation is the hardest part

• In process - place state in scope and always remove
• Across processes - inject state into message and out on

the other side
• Among other contexts - you may not be the only one

In process propagation

• Scoping api - ensures state is visible to downstream code
and always cleaned up. ex try/finally

• Instrumentation - carries state to where it can be scoped
• Async - you may have to stash it between callbacks
• Queuing - if backlog is possible, you may have to attach

it to the message even in-process

Across process propagation

• Headers - usually you can encode state into a header
• some proxies will drop it
• some services/clones may manipulate it

• Envelopes - sometimes you have a custom message envelope
• this implies coordination as it can make the message

unreadable

Among other tracing implementations

• In-process - you may be able to join their context
• you may be able to read their data (ex thread local storage)
• you may be able to correlate with it

• Across process - you may be able to share a header
• only works if your ID format can fit into theirs
• otherwise you may have to push multiple headers

Wrapping Up

introduction

understanding latency

distributed tracing

zipkin

demo

wrapping up

@adrianfcole#zipkin

Wrapping up

Start by sending traces directly to a zipkin server.

Grow into fanciness as you need it: sampling, streaming, etc

Remember you are not alone!

@adrianfcole#zipkin

@zipkinproject

gitter.im/openzipkin/zipkin

https://twitter.com/zipkinproject
https://gitter.im/openzipkin/zipkin

Example Tracing Flow

log correlation

metrics scope

http request

Reporter

http request

Recorder

Trace
Context

Parser

