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Monads 
are just 

monoids in the category 
of endofunctors.



Explanation Path
Monoid         it's simple

Functor         you already know it

Endo-            cool idea

Monoid of endofunctors = monad



Integers (+)
2 + 3     == 5   
2 + 0     == 2   
0 + 3     == 3  
( 1+2 )+3 == 1+( 2+3 )



Integers (*)
2 * 3     == 6   
2 * 1     == 2   
1 * 3     == 3  
( 2*3 )*4 == 2*( 3*4 ) 



Boolean (&&)
a && b          == c   
a && true       == a   
true && b       == b  
( a && b ) && c == a &&( b && c ) 



Lists, Arrays (+)
[1] + [2]     == [1, 2]  
[1] + [ ]     == [1]  
[ ] + [2]     == [2]  
([1]+[2])+[3] == [1]+([2]+[3])



Strings (+)
"1" + "2"   == "12"  
"1" + ""    == "1"  
""  + "2"   == "2"  
( "Hi"+"," )+"JFokus" ==  
             "Hi"+( ","+"JFokus" )



Extract
type <> type => type

neutral element

left & right identity

associative



Abstract
We call this concept "Monoid" 
short for "that thing, you know, that you can combine 
with another thing of the same type to produce a new 
thing of the type of the other two as long as there is a 
value of that type that when combined left or right does 
not change the value you combined that special value 
with and any such combination must yield the same 
result no matter which two you combine first."



LEGO Monoid
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LEGO Monoid



LEGO Neutral Brick



LEGO Left & Right Identity



Generic Fold Right
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Generic Optimized Fold
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Generic Optimized Fold



Crazy Monoids
              (a -> b) <> (b -> c) == (a -> c)  

Can a function type (a->b) be a monoid?

What is the operation?

What is the neutral element?

Is it associative?



Function Composition
co(f,g) = x => f(g(x));

id(x) = x;

co(id,g) == x => id(g(x)) // definition co  
               == x => g(x)       // apply id  
               == g                     // qed



Functors map
[1, 2, 3].map( x=> x+2 )  == [3, 4, 5]

(Just 1).map( x=> x+2 ) == Just 3

Nothing.map( whatever ) == Nothing 

List, Tree, Stream, Optional, Pipeline, Error, 
Validation, Observable, Future, Promise,..



Functors compose
[1, 2, 3].map( x => x + 2 )  
             .map( x => 3 * x )  
             == 
[1, 2, 3].map( x => 3 * (x+2) )

co( functor.map(f), functor.map(g) )  
             == functor.map( co(f, g) )

functor.map(id) == id  // only for completeness



Functors are not Monoids
[1, 2, 3]         .map( x => x.toString() ) == ["1","2","3"]

[Int]             .map( Int -> String )         -> [String]

functor a    .map( a -> b)                     -> functor b 



Clever Idea:
instead of (a->b)  
provide a special mapping with (a -> functor b), 
which is essentially a constructor for functors.

 
functor a   <>   functor b                =>    functor  b  
functor a   .endo(a->functor b)   =>    functor  b



Clever Idea in Action
[1, 2, 3].endo( x => replicate(x, x.toString()) ) == 
          [  ["1"],  ["2","2"],  ["3","3","3"]  ]

then flatten =>  ["1", "2", "2", "3", "3", "3"]   //aka "join"

funcA.flatMap(f) = funcB.flatten(funcA.endo(f))

// aka "bind" or ">>=" 



Finalising the Monoid
functor a     .flatMap(a->functor b)  =>    functor  b  
 
(a->functor a) <> (a->functor b)  =>  (a->functor b)

We need an (a-> functor a) ctor and flatMap (we 
already have map, so we only need flatten). If the 
functor is monoidal with flatMap as <> and ctor as 
neutal element, then we call it a Monad.



Wrapping up
Let (m a) be a given monad over type a. 
(m a) has a ctor (a -> m a). // aka "return" or "pure" 
(m a) is a functor over a.  
(m (m a)) can be flattened to (m a). 
(a-> m a).flatMap( a -> m b) is a monoidal operation.

Alternative way of writing in pure FP style  
(>>=) :: Monad m => m a -> (a -> m b) -> m b



Takeaways
Associativity (monoid) requires pure functions.

Monoids can fold but they cannot escape.

Monads are the most versatile functors (map, filter, 
expand, reduce) that composes and folds without 
escaping.



Use Cases
Purely functional state threads 
List comprehensions, Streams (possibly reactive)  
CompletableFuture, Promises, Continuations 
LINQ-style database access  
Either, Validation, Exception handling 
Optionality, Indeterminism, Parsers, Search trees 
Sequencing IO actions, isolating UI actions 
STM transactions, …



No IO in Transactions!



Type inference FTW
Less	tricky 

errors



There is a world…
… where logical reasoning rules and structure 
arises from consistency and a rich set of relations.

Exploring this world is like programming without 
implementation.

Purely functional programming opens the door. 
Consider Haskell, Frege, Purescript, Idris.
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