
Functional Programming 
beyond map/filter/reduce

JFokus 2018

Prof. Dierk König
canoo

mittie

Monads 
are just 

monoids in the category
of endofunctors.

Explanation Path
Monoid it's simple

Functor you already know it

Endo- cool idea

Monoid of endofunctors = monad

Integers (+)
2 + 3 == 5  
2 + 0 == 2  
0 + 3 == 3  
(1+2)+3 == 1+(2+3)

Integers (*)
2 * 3 == 6  
2 * 1 == 2  
1 * 3 == 3  
(2*3)*4 == 2*(3*4)

Boolean (&&)
a && b == c  
a && true == a  
true && b == b  
(a && b) && c == a &&(b && c)

Lists, Arrays (+)
[1] + [2] == [1, 2]  
[1] + [] == [1]  
[] + [2] == [2]  
([1]+[2])+[3] == [1]+([2]+[3])

Strings (+)
"1" + "2" == "12"  
"1" + "" == "1"  
"" + "2" == "2"  
("Hi"+",")+"JFokus" ==  
 "Hi"+(","+"JFokus")

Extract
type <> type => type

neutral element

left & right identity

associative

Abstract
We call this concept "Monoid" 
short for "that thing, you know, that you can combine
with another thing of the same type to produce a new
thing of the type of the other two as long as there is a
value of that type that when combined left or right does
not change the value you combined that special value
with and any such combination must yield the same
result no matter which two you combine first."

LEGO Monoid

LEGO Monoid

LEGO Monoid

LEGO Neutral Brick

LEGO Left & Right Identity

Generic Fold Right

Generic Fold Right

Generic Fold Right

Generic Fold Right

Generic Optimized Fold

Generic Optimized Fold

Generic Optimized Fold

Crazy Monoids
 (a -> b) <> (b -> c) == (a -> c)

Can a function type (a->b) be a monoid?

What is the operation?

What is the neutral element?

Is it associative?

Function Composition
co(f,g) = x => f(g(x));

id(x) = x;

co(id,g) == x => id(g(x)) // definition co  
 == x => g(x) // apply id  
 == g // qed

Functors map
[1, 2, 3].map(x=> x+2) == [3, 4, 5]

(Just 1).map(x=> x+2) == Just 3

Nothing.map(whatever) == Nothing

List, Tree, Stream, Optional, Pipeline, Error,
Validation, Observable, Future, Promise,..

Functors compose
[1, 2, 3].map(x => x + 2)  
 .map(x => 3 * x)  
 == 
[1, 2, 3].map(x => 3 * (x+2))

co(functor.map(f), functor.map(g))  
 == functor.map(co(f, g))

functor.map(id) == id // only for completeness

Functors are not Monoids
[1, 2, 3] .map(x => x.toString()) == ["1","2","3"]

[Int] .map(Int -> String) -> [String]

functor a .map(a -> b) -> functor b

Clever Idea:
instead of (a->b)  
provide a special mapping with (a -> functor b), 
which is essentially a constructor for functors.

 
functor a <> functor b => functor b  
functor a .endo(a->functor b) => functor b

Clever Idea in Action
[1, 2, 3].endo(x => replicate(x, x.toString())) == 
 [["1"], ["2","2"], ["3","3","3"]]

then flatten => ["1", "2", "2", "3", "3", "3"] //aka "join"

funcA.flatMap(f) = funcB.flatten(funcA.endo(f))

// aka "bind" or ">>="

Finalising the Monoid
functor a .flatMap(a->functor b) => functor b  
 
(a->functor a) <> (a->functor b) => (a->functor b)

We need an (a-> functor a) ctor and flatMap (we
already have map, so we only need flatten). If the
functor is monoidal with flatMap as <> and ctor as
neutal element, then we call it a Monad.

Wrapping up
Let (m a) be a given monad over type a. 
(m a) has a ctor (a -> m a). // aka "return" or "pure" 
(m a) is a functor over a.  
(m (m a)) can be flattened to (m a). 
(a-> m a).flatMap(a -> m b) is a monoidal operation.

Alternative way of writing in pure FP style  
(>>=) :: Monad m => m a -> (a -> m b) -> m b

Takeaways
Associativity (monoid) requires pure functions.

Monoids can fold but they cannot escape.

Monads are the most versatile functors (map, filter,
expand, reduce) that composes and folds without
escaping.

Use Cases
Purely functional state threads 
List comprehensions, Streams (possibly reactive)  
CompletableFuture, Promises, Continuations 
LINQ-style database access  
Either, Validation, Exception handling 
Optionality, Indeterminism, Parsers, Search trees 
Sequencing IO actions, isolating UI actions 
STM transactions, …

No IO in Transactions!

Type inference FTW
Less	tricky 

errors

There is a world…
… where logical reasoning rules and structure
arises from consistency and a rich set of relations.

Exploring this world is like programming without
implementation.

Purely functional programming opens the door. 
Consider Haskell, Frege, Purescript, Idris.

mittie

 Please give feedback! Prof. Dierk König
canoo

