
Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved	

Collec>ons	Refueled	
Collec&ons	Framework	Enhancements	in	Java	9	

Stuart	Marks	
Core	Libraries	
Java	PlaIorm	Group,	Oracle	
	
TwiNer: 	@stuartmarks	

	#Collec>onsRefueled	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
(Almost)	Twenty	Years	of	Java	Collec>ons	
•  JDK	1.0	–	1996	
– “Legacy	Collec>ons”:	Vector,	Hashtable	
•  JDK	1.2	–	1998	
– Collec>ons	Framework	introduced:	Collec>on,	List,	Set,	Map,	ArrayList,	HashMap	

•  Java	SE	5.0	–	2004	
– generics	introduced,	collec>ons	generified	
– java.u>l.concurrent	
•  Java	8	–	2014	
– lambda,	streams;	default	methods	enhanced	all	exis(ng	collec>ons	

2	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Java	9	–	Collec>ons	Convenience	Factory	Methods	
• Convenient	and	Concise	
•  Space	Efficient	
• Unmodifiable	

3	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Java	9	–	Collec>ons	Convenience	Factory	Methods	
•  Library-only	API;	no	language	changes	
– sta>c	factory	methods	for	crea>ng	new	lists,	sets,	maps	
– gets	~80%	of	the	benefit	of	language	changes	at	a	>ny	frac>on	of	the	cost	
• Why	not	“collec>on	literals”	as	in	other	languages?	
– Java’s	only	built-in	aggrega>on	constructs	are	arrays	and	classes	
– higher-level	abstrac>ons	(collec>ons)	are	delegated	to	libraries	
– binding	Java	language	and	libraries	too	>ghtly	would	create	design	discomfort	
•  in	par>cular,	the	language	would	now	depend	on	collec>ons	implementa>ons	in	java.u>l	

4	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	

5	

List.of()	
List.of(e1)	
List.of(e1,	e2)										//	fixed-arg	overloads	up	to	ten	elements	
List.of(elements...)					//	varargs	supports	arbitrary	number	of	elements	
	
Set.of()	
Set.of(e1)	
Set.of(e1,	e2)											//	fixed-arg	overloads	up	to	ten	elements	
Set.of(elements...)						//	varargs	supports	arbitrary	number	of	elements	
	
Map.of()	
Map.of(k1,	v1)	
Map.of(k1,	v1,	k2,	v2)			//	fixed-arg	overloads	up	to	ten	key-value	pairs	
	
Map.ofEntries(entry(k1,	v1),	entry(k2,	v2),	...)					//	varargs	
	
Map.entry(k,	v)										//	creates	a	Map.Entry	instance	

New	JDK	9	APIs:	Sta>c	Methods	on	Interfaces	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	

6	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	

7	

//	Java	8	
	
				List<String>	stringList	=	
								Collections.unmodifiableList(	
												Arrays.asList("a",	"b",	"c"));	
	
	
	
//	Java	9	
	
				List<String>	stringList	=	List.of("a",	"b",	"c");	
	

List	Example	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	

8	

//	Java	8	
	
				Set<String>	stringSet	=	
								Collections.unmodifiableSet(	
												new	HashSet<>(	
																Arrays.asList("a",	"b",	"c")));	
	
	
//	Java	9	
	
				Set<String>	stringSet	=	Set.of("a",	"b",	"c");	
	
	

Set	Example	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	

9	

//	Java	8	
	
				Map<String,	Integer>	stringMap	=	new	HashMap<>();	
				stringMap.put("a",	1);	
				stringMap.put("b",	2);	
				stringMap.put("c",	3);	
				stringMap	=	Collections.unmodifiableMap(stringMap);	
	
//	Java	9	
	
				Map<String,	Integer>	stringMap	=	Map.of("a",	1,	"b",	2,	"c",	3);	
	

Map	Example	(<=	10	entries)	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	

10	

Map<String,	TokenType>	tokens	=	Map.ofEntries(	
				entry("@",					AT),	
				entry("|",					VERTICAL_BAR),	
				entry("#",					HASH),	
				entry("%",					PERCENT),	
				entry(":",					COLON),	
				entry("^",					CARET),	
				entry("&",					AMPERSAND),	
				entry("!",					EXCLAM),	
				entry("?",					QUESTION),	
				entry("$",					DOLLAR),	
				entry("::",				PAAMAYIM_NEKUDOTAYIM),	
				entry("=",					EQUALS),	
				entry(";",					SEMICOLON)	
);	
	

Map	Example	(>	10	entries)	

Each	call	to	entry()	returns	a	
single	instance	of	Map.Entry	

The	Map.ofEntries()	method	
accepts	a	varargs	argument	
of	Map.Entry	instances	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Implementa>on	Characteris>cs	
• Unmodifiable	
• Nulls	Disallowed	
• Randomized	Itera>on	Order	(Sets	and	Maps)	
• Duplicates	Disallowed	(Sets	and	Maps)	
•  Space	Efficient	
•  Serializable	

11	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Unmodifiable	
• Collec>ons	returned	by	the	new	sta>c	factory	methods	are	unmodifiable	
– aNempts	to	add,	set,	or	remove	throw	UnsupportedOpera>onExcep>on	

• What	good	is	an	unmodifiable	collec>on?	
– collec>ons	ouen	ini>alized	from	known	values,	never	changed	
– can	pass	internal	collec>on	to	client	without	fear	of	accidental	modifica>on	
– one	step	towards	thread-safety	
– provides	opportuni>es	for	space	efficiency	

•  These	collec>ons	themselves	are	unmodifiable	
– compare	Collec>ons.unmodifiableList()	etc.	wrappers	around	another	collec>on	

12	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Unmodifiable	Collec>ons	vs.	Unmodifiable	Wrappers	
• What’s	the	difference	between	list1	and	list2?	

List<Integer>	inner	=	Arrays.asList(1,	2,	3);	
List<Integer>	list1	=	Collections.unmodifiableList(inner);	
List<Integer>	list2	=	List.of(1,	2,	3);	

•  Similari>es	
–  Mutator	methods	add(),	remove(),	set()	etc.	throw	UnsupportedOpera>onExcep>on	

•  Differences	
–  list1	is	an	unmodifiable	view	of	the	underlying	list	inner	
–  inner	can	be	modified,	and	modifica>ons	to	it	are	visible	to	list1	
–  list2	cannot	be	modified	at	all	

13	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Nulls	Disallowed	
• Nulls	disallowed	as	List	or	Set	members,	Map	keys	or	values	
– NullPointerExcep>on	thrown	at	crea>on	>me	

• Allowing	nulls	in	collec>ons	back	in	1.2	was	a	mistake	
– no	collec>on	in	Java	5	or	later	(esp.	java.u>l.concurrent)	has	permiNed	nulls	
– classic	collec>ons	like	ArrayList,	HashMap	s>ll	allow	nulls	

• Why	not?	
– nulls	are	a	source	of	NPEs	in	applica>ons,	seman>cally	confusing	
– nulls	useful	as	sen>nel	values	in	APIs,	e.g.,	Map.get(),	Map.compute()	
– nulls	useful	as	sen>nel	values	for	op>mizing	implementa>ons	

14	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Randomized	Itera>on	Order	
•  Itera>on	order	for	Set	elements	and	Map	keys	
– HashSet,	HashMap:	order	is	officially	unspecified	
– however,	usually	consistent	for	long	periods	of	>me	(>	1	JDK	release	cycle)	
– inadvertent	order	dependencies	can	creep	into	code	
•  Lots	of	code	breaks	when	itera>on	order	is	changed	
– occasionally	necessary	to	improve	performance	or	fix	security	holes	
– lots	of	code	probably	has	latent	itera>on	order	dependencies	(i.e.,	bugs!)	
– “just	change	this	HashMap	to	a	LinkedHashMap”	–	random	bugs	disappear	

15	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Randomized	Itera>on	Order	
•  Solu>on:	randomized	itera>on	order	for	new	collec>ons	
– make	itera>on	order	predictably	unpredictable!	
–  itera>on	order	will	be	stable	within	a	JVM	instance	
– but	will	change	from	one	run	to	the	next	

•  Precedents:	Go	language;	Python	3.0	–	3.5	
•  Goal:	“toughen	up”	user	code	to	prevent	itera>on	order	dependencies	
– bugs	flushed	out	in	development	and	test,	before	produc>on	(we	hope)	

•  Applies	only	to	new	collec>ons	implementa>ons	
– by	defini>on,	no	exis>ng	code	depends	on	their	itera>on	order	
– exis>ng	collec>ons	will	remain	the	same	

• Worried?	Use	LinkedHashSet	/	LinkedHashMap	

16	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Duplicates	Disallowed	
• Duplicate	set	elements	or	map	keys	throw	IllegalArgumentExcep>on	
• Duplicates	in	a	“collec>on	literal”	are	most	likely	a	programming	error	
•  Ideally	this	would	be	detected	at	compile	>me	
– values	aren’t	compile->me	constants	
– next	best	thing:	fail-fast	on	crea>on	at	run>me	

• Very	few	other	systems	do	this	
– most	are	“last	one	wins”	
– Clojure	and	ECMAScript	(strict)	are	notable	outliers	

17	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	

18	

Map<String,	TokenType>	tokens	=	Map.ofEntries(	
				entry("@",					AT),	
				entry("|",					VERTICAL_BAR),	
				entry("#",					HASH),	
				entry("%",					PERCENT),	
				entry(":",					COLON),	
				entry("^",					CARET),	
				entry("&",					AMPERSAND),	
				entry("|",					EXCLAM),	
				entry("?",					QUESTION),	
				entry("$",					DOLLAR),	
				entry("::",				PAAMAYIM_NEKUDOTAYIM),	
				entry("=",					EQUALS),	
				entry(";",					SEMICOLON)	
);	
	

Example:	Map	With	Duplicate	Keys	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Space	Efficiency	
• All	implementa>ons	are	private	classes	hidden	behind	sta>c	factory	
– sta>c	factory	method	chooses	the	implementa>on	based	on	number	of	elements	

• Different	data	organiza>ons	
– field-based	implementa>ons	for	0,	1,	2	elements	
– array-based	with	closed	hashing	for	>	2	elements	
– implementa>ons	can	be	changed	compa>bly	in	any	JDK	release	

• Benefits	
– less	space	overall	
– fewer	objects	result	in	improved	locality	of	reference	

19	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Space	Efficiency	
• Consider	an	unmodifiable	set	containing	two	strings	

Set<String>	set	=	new	HashSet<>(3);		//	3	is	the	number	of	buckets	
set.add("foo");	
set.add("bar");	
set	=	Collections.unmodifiableSet(set);	

• How	much	space	does	this	take?	Count	objects.	
– 1	unmodifiable	wrapper	
– 1	HashSet	
– 1	HashMap	
– 1	Object[]	table	of	length	3	
– 2	Node	objects,	one	for	each	element	

20	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Space	Efficiency	

21	

set	

unmod	wrapper	

HashSet	

HashMap	 table	

Node	

Node	

"foo"	
PRESENT	

"bar"	
PRESENT	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Space	Efficiency	
• Object	size	es>mate	
– 12	byte	header	per	object	
– plus	4	bytes	per	int,	float,	or	reference	field	
– (assume	64-bit	JVM	with	compressed	OOPS)	

•  Total	collec>on	overhead	(not	coun>ng	contents)	
– unmod	wrapper:	header	+	1	field	=	16	bytes	
– HashSet:	header	+	1	field	=	16	bytes	
– HashMap:	header	+	6	fields	=	36	bytes	
– table:	header	+	4	fields	=	28	bytes	
– Node:	header	+	4	fields	=	28	bytes	x	2	=	56	bytes	

22	

Total	152	bytes	to	store	
two	object	references!	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Space	Efficiency	
•  Field-based	set	implementa>on	

Set<String>	set	=	Set.of("foo",	"bar");	

• One	object,	two	reference	fields	
– 20	bytes,	compared	to	152	bytes	for	conven>onal	structure	

•  Efficiency	gains	
– lower	fixed	cost:	fewer	objects	created	for	a	collec>on	of	any	size	
– lower	variable	cost:	fewer	bytes	overhead	per	collec>on	element	

23	

Set2	 "foo"	
"bar"	set	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Serializa>on	
• All	collec>ons	will	be	serializable	(if	contents	serializable)	
– yes,	people	really	use	serializa>on	
– default	serialized	form	would	“leak”	informa>on	about	internal	implementa>on	
•  this	can	be	a	compa>bility	issue	if	you’re	not	careful	

• New	collec>ons	implementa>ons	will	have	custom	serial	form	
– serializa>on	emits	serial	proxy	to	keep	implementa>ons	opaque	
– single,	common	serial	proxy	shared	by	all	implementa>ons	
– deserializa>on	chooses	implementa>on	based	on	current	criteria	in	effect	
– not	serializa>on	compa>ble	with	JDK	8	and	earlier	

24	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	

25	

//	Copy	Factories	–	for	making	shallow	copies	
//	short-circuits	copying	if	not	necessary	
//	if	src	is	unmodifiable,	returns	'this'	
	
List.copyOf(Collection<T>	src)	
Set.copyOf(Collection<T>	src)	
Map.copyOf(Map<K,V>	src)	
	
//	Stream	Collectors	
//	produce	same	implementations	as	List.of(),	Set.of(),	Map.of()	
	
Collectors.toUnmodifiableList()	
Collectors.toUnmodifiableSet()	
Collectors.toUnmodifiableMap(keyFunc,	valFunc)	
Collectors.toUnmodifiableMap(keyFunc,	valFunc,	mergeFunc)	
	
	

New	APIs	for	JDK	10	 18.3	 10	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

#Collec>onsRefueled	
Summary	
• Collec>ons	framework	is	19	years	old,	s>ll	useful	and	extensible!	
•  JDK	9	adds	Collec>on	Factory	Methods	
– convenient,	concise,	space-efficient,	unmodifiable	
– promising	space	&	performance	improvements	from	use	in	JDK	9	itself	

•  JDK	9	is	shipping!	
– hNp://jdk.java.net/9/	
• More	on	the	way	for	JDK	10	and	JDK	11	
• Ques>ons?	
– TwiNer: 	 	@stuartmarks	 	#Collec>onsRefueled	

26	



Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Safe	Harbor	Statement	
The	preceding	is	intended	to	outline	our	general	product	direc>on.	It	is	intended	for	
informa>on	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	func>onality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	>ming	of	any	features	or	
func>onality	described	for	Oracle’s	products	remains	at	the	sole	discre>on	of	Oracle.	

27	


