
TypeScript Go(es) Embedded

?

@noctarius2k

@noctarius2k

Reacts to: Chris

@noctarius2k

Codes Java

@noctarius2k

Codes Java

Prefers Kotlin

@noctarius2k

Codes Java

Prefers Kotlin

Forced to use JS

@noctarius2k

Codes Java

Prefers Kotlin

Forced to use JS Kinda likes Go

@noctarius2k

Codes Java

Prefers Kotlin

Forced to use JS Kinda likes Go

Adores TypeScript

@noctarius2k

Codes Java

Prefers Kotlin

Forced to use JS Kinda likes Go

LOVES BEER!
(German, obviously)

Adores TypeScript

@noctarius2k

@noctarius2k

Garbage Collection

@noctarius2k

Garbage Collection

Performance Optimization

@noctarius2k

Garbage Collection

Performance Optimization

JVM Internals

Disclaimer

Disclaimer

This Talk Is Very Subjective!

Disclaimer

This Talk Is Very Subjective!

I’m Very Opinionated! *

Disclaimer

This Talk Is Very Subjective!

I’m Very Opinionated!

I Have A Lot Of Hate In Me ;-)

*

*

Disclaimer

This Talk Is Very Subjective!

I’m Very Opinionated!

I Have A Lot Of Hate In Me ;-)

*

*

Happy To Have Plenty Of Discussions!*

So what are we
talking about?

Super Computer

Super Computer

Microcontroller (PIC)

Super Computer

Microcontroller (PIC)

Super Computer

Microcontroller (PIC)

Desktop Computer (no special brand ;-))

Super Computer

Microcontroller (PIC)

Desktop Computer (no special brand ;-))

Super Computer

Microcontroller (PIC)

Desktop Computer (no special brand ;-))

Super Computer
Single Board Computer (SBC)

Microcontroller (PIC)

Desktop Computer (no special brand ;-))

Super Computer
Single Board Computer (SBC)

!

Probably the most known system of that kind

Different Types Of CPU Architectures

Different Types Of CPU Architectures

Different Types Of CPU Architectures

Different Types Of CPU Architectures

XX*

Different Types Of CPU Architectures

XX*

* Plenty of different architecture variants (most common A7 / A8)

And People
Actively Build
Products On
Those SBCs

And People
Actively Build
Products On
Those SBCs

Just a few quick RaspberryPi examples*

https://pi-top.com/

http://fiveninjas.com/

http://dock2office.com/raspberry-pi/

https://www.kickstarter.com/projects/1598272670/meet-otto-the-hackable-gif-camera

More Modules With
Clear Focus On

Commercialization

RaspberryPi Compute Module

RaspberryPi Compute Module

Chip Pro (not recommended)

RaspberryPi Compute Module

Chip Pro (not recommended)

Omega 2s

RaspberryPi Compute Module

Chip Pro (not recommended)

BeagleCore

Omega 2s

RaspberryPi Compute Module

Chip Pro (not recommended)

BeagleCore

Omega 2s

Many More…

RaspberryPi Can Also Get Customized!

So How Are
Those Things
Programmed?

Dev Kit Example

And thankfully …

And thankfully …
Most Embedded Systems These Days Run…

And thankfully …
Most Embedded Systems These Days Run…

And thankfully …
Most Embedded Systems These Days Run…

This Includes…

… and others

 .data #data portion
strng: .asciiz " bottles of beer on the wall, "
strng2: .asciiz " bottles of beer "
strng3: .asciiz "\ntake one down and pass it around, "
strng4: .asciiz " bottle of beer on the wall "
strng5: .asciiz " bottle of beer "
strng6: .asciiz " bottles of beer on the wall.\n "

one: .word 1
 .text #code section
main: #main
 li $a2, 1 #
 li $a3, 99 #start with 99
loop: jal PRNTB #print bottle count
 la $a0, strng #print strng
 li $v0, 4 #
 syscall #
 jal PRNTB #
 la $a0, strng2 #print strng2
 li $v0, 4 #
 syscall #
 la $a0, strng3 #print strng3
 li $v0, 4 #
 syscall #
 sub $a3, $a3, 1 #subtract one
 jal PRNTB #
 la $a0, strng6 #print strng6
 li $v0, 4 #
 syscall #
 bne $a3, $a2, skip #handles one
 #bottle on wall
 jal ONEBOT #
skip: bnez $a3, loop #Loop if not equal to 0
 li $v0, 10 #exit
 syscall #

PRNTB: move $a0, $a3 #prnt bottle count
 li $v0, 1 #
 syscall #
 jr $ra #return from method

ONEBOT: addi $sp, $sp, -4 #allocate
 sw $ra, 0($sp) #store rtrn address
 jal PRNTB #
 la $a0, strng4 #print strng4
 li $v0, 4 #
 syscall #
 jal PRNTB #
 la $a0, strng5 #print strng5
 li $v0, 4 #
 syscall #
 la $a0, strng3 #print strng3
 li $v0, 4 #
 syscall #
 sub $a3, $a3, 1 #subtract one
 jal PRNTB #
 la $a0, strng6 #print strng6
 li $v0, 4 #
 syscall #
 lw $ra,0($sp) #load address
 addi $sp,$sp,4 #pop
 jr $ra #rtrn from method

 .data #data portion
strng: .asciiz " bottles of beer on the wall, "
strng2: .asciiz " bottles of beer "
strng3: .asciiz "\ntake one down and pass it around, "
strng4: .asciiz " bottle of beer on the wall "
strng5: .asciiz " bottle of beer "
strng6: .asciiz " bottles of beer on the wall.\n "

one: .word 1
 .text #code section
main: #main
 li $a2, 1 #
 li $a3, 99 #start with 99
loop: jal PRNTB #print bottle count
 la $a0, strng #print strng
 li $v0, 4 #
 syscall #
 jal PRNTB #
 la $a0, strng2 #print strng2
 li $v0, 4 #
 syscall #
 la $a0, strng3 #print strng3
 li $v0, 4 #
 syscall #
 sub $a3, $a3, 1 #subtract one
 jal PRNTB #
 la $a0, strng6 #print strng6
 li $v0, 4 #
 syscall #
 bne $a3, $a2, skip #handles one
 #bottle on wall
 jal ONEBOT #
skip: bnez $a3, loop #Loop if not equal to 0
 li $v0, 10 #exit
 syscall #

PRNTB: move $a0, $a3 #prnt bottle count
 li $v0, 1 #
 syscall #
 jr $ra #return from method

ONEBOT: addi $sp, $sp, -4 #allocate
 sw $ra, 0($sp) #store rtrn address
 jal PRNTB #
 la $a0, strng4 #print strng4
 li $v0, 4 #
 syscall #
 jal PRNTB #
 la $a0, strng5 #print strng5
 li $v0, 4 #
 syscall #
 la $a0, strng3 #print strng3
 li $v0, 4 #
 syscall #
 sub $a3, $a3, 1 #subtract one
 jal PRNTB #
 la $a0, strng6 #print strng6
 li $v0, 4 #
 syscall #
 lw $ra,0($sp) #load address
 addi $sp,$sp,4 #pop
 jr $ra #rtrn from method

Assembler

int main(void)
{
 int x;
 char xs[4];
 char *n = "o more";
 char *b = " bottle";
 char *o = " of beer";
 char *w = " on the wall";

 while(1)
 {
 x = 99;
 while(x)
 {
 printf("%d%s%s%s%s, ", x, b, x == 1 ? "" : "s", o, w);
 printf("%d%s%s%s\n", x, b, x == 1 ? "" : "s", o);
 printf("Take %s down and pass it around, ", x-- == 1 ? "it" : "one");
 sprintf(xs, "%d", x);
 printf("%s%s%s%s%s\n\n", x > 0 ? xs : "No", b, x != 1 ? "s" : "", o, w);
 }
 printf("N%s%ss%s%s, n%s%ss%s\n\7", n, b, o, w, n, b, o);
 printf("Go to the store and buy some more\n");
 }
}

int main(void)
{
 int x;
 char xs[4];
 char *n = "o more";
 char *b = " bottle";
 char *o = " of beer";
 char *w = " on the wall";

 while(1)
 {
 x = 99;
 while(x)
 {
 printf("%d%s%s%s%s, ", x, b, x == 1 ? "" : "s", o, w);
 printf("%d%s%s%s\n", x, b, x == 1 ? "" : "s", o);
 printf("Take %s down and pass it around, ", x-- == 1 ? "it" : "one");
 sprintf(xs, "%d", x);
 printf("%s%s%s%s%s\n\n", x > 0 ? xs : "No", b, x != 1 ? "s" : "", o, w);
 }
 printf("N%s%ss%s%s, n%s%ss%s\n\7", n, b, o, w, n, b, o);
 printf("Go to the store and buy some more\n");
 }
}

ANSI C

#include <iostream>  
#include <string>  
 
int main()  
{  
 std::string s[9] =  
 {  
 " bottle", " bottles", " of beer", " on the wall", 
 "Take one down and pass it around, ", "No more", " no more", "1", 
 "Go to the store and buy some more, 99"  
 };  
 for(int i = 99; i > 0; i—)  
 {  
 if (i < 3)

 std::cout << i << s[i - 1] << s[2] << s[3] << ", " << i << s[i- 1] << s[2]  
 << ".\n" << s[4] << s[i + 5] << s[(i * -1) + 2] << s[2] << s[3] << ".\n\n"; 
 else  
 std::cout << i << s[1] << s[2] << s[3] << ", " << i << s[1] << s[2]  
 << ".\n" << s[4] << i - 1 << s[1] << s[2] << s[3] << “.\n\n"; 
 }  
 std::cout << s[5] << s[1] << s[2] << s[3] << ',' << s[6] << s[1] << s[2]  
 << ".\n" << s[8] << s[1] << s[2] << s[3] << '.'; 
 std::cin.get();  
 return 0;  
}

#include <iostream>  
#include <string>  
 
int main()  
{  
 std::string s[9] =  
 {  
 " bottle", " bottles", " of beer", " on the wall", 
 "Take one down and pass it around, ", "No more", " no more", "1", 
 "Go to the store and buy some more, 99"  
 };  
 for(int i = 99; i > 0; i—)  
 {  
 if (i < 3)

 std::cout << i << s[i - 1] << s[2] << s[3] << ", " << i << s[i- 1] << s[2]  
 << ".\n" << s[4] << s[i + 5] << s[(i * -1) + 2] << s[2] << s[3] << ".\n\n"; 
 else  
 std::cout << i << s[1] << s[2] << s[3] << ", " << i << s[1] << s[2]  
 << ".\n" << s[4] << i - 1 << s[1] << s[2] << s[3] << “.\n\n"; 
 }  
 std::cout << s[5] << s[1] << s[2] << s[3] << ',' << s[6] << s[1] << s[2]  
 << ".\n" << s[8] << s[1] << s[2] << s[3] << '.'; 
 std::cin.get();  
 return 0;  
}

C++

… but I’m Not A Big Fan
Of Either Language

I’m A Java Guy!

I’m A Java Guy!

So The Obvious Choice Was?!

Oracle Java SE Embedded

Azul Zulu Embedded

Oracle Java SE Embedded

Azul Zulu Embedded

Space Requirement
 (Runtime)

Oracle Java SE Embedded

Azul Zulu Embedded

Space Requirement
 (Runtime)

Cost Requirement 
(Minimizing)

Couldn’t Afford Both

Java Out :(

So I Went On A Journey…

• I really don’t like C/C++

• I really don’t like C/C++
• Complicated to cross-compile

• I really don’t like C/C++
• Complicated to cross-compile
• Hard to make secure / memory safe

• I really don’t like C/C++
• Complicated to cross-compile
• Hard to make secure / memory safe
• Custom memory handling

• Interesting language

• Interesting language
• Big community

• Interesting language
• Big community
• Very memory safe / borrowing

• Interesting language
• Big community
• Very memory safe / borrowing
• Still complex to cross-compile (cargo, rustup)

Other Ideas?

Other Ideas?

Native

Other Ideas?

Native

Other Ideas?

Native

• Very opinionated language (I often like opinionated)

• Very opinionated language (I often like opinionated)
• Pretty big community

• Very opinionated language (I often like opinionated)
• Pretty big community, lots of known projects

• Very opinionated language (I often like opinionated)
• Pretty big community, lots of known projects

• Very opinionated language (I often like opinionated)
• Pretty big community, lots of known projects

• Very opinionated language (I often like opinionated)
• Pretty big community, lots of known projects

• Very opinionated language (I often like opinionated)
• Pretty big community, lots of known projects
• Very memory safe

• Very opinionated language (I often like opinionated)
• Pretty big community, lots of known projects
• Very memory safe
• Pretty cool cross-compile features (builtin)

• Very opinionated language (I often like opinionated)
• Pretty big community, lots of known projects
• Very memory safe
• Pretty cool cross-compile features (builtin)
• Kinda weird syntax

• Very opinionated language (I often like opinionated)
• Pretty big community, lots of known projects
• Very memory safe
• Pretty cool cross-compile features (builtin)
• Kinda weird syntax
• Error handling … don’t get me started ;-)

http://embd.kidoman.io

https://github.com/ziutek/emgo

Gomini

Introducing

https://github.com/Shopify/go-lua https://github.com/dop251/goja

https://github.com/Shopify/go-lua https://github.com/dop251/goja

https://github.com/Shopify/go-lua https://github.com/dop251/goja

https://github.com/Shopify/go-lua https://github.com/dop251/goja

https://github.com/Shopify/go-lua https://github.com/dop251/goja

So How Does Gomini Work?

Embedded Linux

Embedded Linux

Gomini Kernel (Golang)

Embedded Linux

Gomini Kernel (Golang)

G
om

in
i K

er
ne

l (
Ty

pe
Sc

rip
t)

G
oj

a
JS

 V
M

Embedded Linux

Gomini Kernel (Golang)

G
om

in
i K

er
ne

l (
Ty

pe
Sc

rip
t)

Goja JS VM

Goja JS VM

Goja JS VM

G
oj

a
JS

 V
M

App n (TypeScript)

App 2 (TypeScript)

App 1 (TypeScript)

…

Embedded Linux

Gomini Kernel (Golang)

G
om

in
i K

er
ne

l (
Ty

pe
Sc

rip
t)

ES
6

Ja
va

Sc
rip

t P
ro

xy
Goja JS VM

Goja JS VM

Goja JS VM

G
oj

a
JS

 V
M

App n (TypeScript)

App 2 (TypeScript)

App 1 (TypeScript)

…

Gomini Kernel

Gomini Kernel
• JavaScript engine written in Go (dop251/goja)

Gomini Kernel
• JavaScript engine written in Go (dop251/goja)
• Kernel uses isolated JS VM

Gomini Kernel
• JavaScript engine written in Go (dop251/goja)
• Kernel uses isolated JS VM
• Fully virtual filesystem

Gomini Kernel
• JavaScript engine written in Go (dop251/goja)
• Kernel uses isolated JS VM
• Fully virtual filesystem
• /kernel/*{.ts,.js} (kernel code)

Gomini Kernel
• JavaScript engine written in Go (dop251/goja)
• Kernel uses isolated JS VM
• Fully virtual filesystem
• /kernel/*{.ts,.js} (kernel code)
• /kernel/apps/*/*.ts (deployed TypeScript apps)

Gomini Kernel
• JavaScript engine written in Go (dop251/goja)
• Kernel uses isolated JS VM
• Fully virtual filesystem
• /kernel/*{.ts,.js} (kernel code)
• /kernel/apps/*/*.ts (deployed TypeScript apps)
• /kernel/@types (exported kernel APIs .d.ts files)

Gomini Kernel
• JavaScript engine written in Go (dop251/goja)
• Kernel uses isolated JS VM
• Fully virtual filesystem
• /kernel/*{.ts,.js} (kernel code)
• /kernel/apps/*/*.ts (deployed TypeScript apps)
• /kernel/@types (exported kernel APIs .d.ts files)
• /kernel/cache (transpiler cache)

Gomini Apps

Gomini Apps
• Each uses an isolated JS VM

Gomini Apps
• Each uses an isolated JS VM
• Access to kernel APIs using ES6 Proxies

Gomini Apps
• Each uses an isolated JS VM
• Access to kernel APIs using ES6 Proxies
• Again fully virtual filesystem

Gomini Apps
• Each uses an isolated JS VM
• Access to kernel APIs using ES6 Proxies
• Again fully virtual filesystem
• / (in kernel /kernel/apps/appx/)

Gomini Apps
• Each uses an isolated JS VM
• Access to kernel APIs using ES6 Proxies
• Again fully virtual filesystem
• / (in kernel /kernel/apps/appx/)
• /*/*{.ts,.js} (app code)

Gomini Apps
• Each uses an isolated JS VM
• Access to kernel APIs using ES6 Proxies
• Again fully virtual filesystem
• / (in kernel /kernel/apps/appx/)
• /*/*{.ts,.js} (app code)
• /kernel/@types (exported kernel APIs .d.ts files)

Gomini Apps
• Each uses an isolated JS VM
• Access to kernel APIs using ES6 Proxies
• Again fully virtual filesystem
• / (in kernel /kernel/apps/appx/)
• /*/*{.ts,.js} (app code)
• /kernel/@types (exported kernel APIs .d.ts files)
• other directories based on permissions

Ok Enough Theory, Time To Play

Thank You
Questions?

Gomini

https://github.com/relationsone/gomini

https://github.com/noctarius/gomini-example

Thank You
Questions?

Gomini

https://www.kickstarter.com/projects/1598272670/meet-otto-the-hackable-gif-camera
https://software.intel.com/en-us/iot/hardware/discontinued
https://kotlinlang.org/docs/reference/native-overview.html
https://www.oracle.com/java/java-se-embedded.html
https://www.azul.com/products/zulu-embedded
http://www.ingenic.com/en/?newton/id/13.html
https://www.raspberrypi.org
http://beaglecore.com
http://beagleboard.org
https://getchip.com/pages/chippro
http://www.orangepi.org
https://pi-top.com
http://fiveninjas.com
http://dock2office.com
https://onion.io
http://www.element14.com/custompi
https://github.com/rust-lang/cargo
https://www.rustup.rs
https://nodejs.org/en
https://developer.apple.com/swift
http://embd.kidoman.io
https://github.com/ziutek/emgo
https://github.com/Shopify/go-lua
https://github.com/dop251/goja

https://github.com/relationsone/gomini

https://github.com/noctarius/gomini-example

