
©2017 Azul Systems, Inc.	 	 	 	 	 	

©2017 Azul Systems, Inc.	 	 	 	 	 	

Java at Speed

getting the most out of modern
hardware

Gil Tene, CTO & co-Founder, Azul Systems

©2017 Azul Systems, Inc.	 	 	 	 	 	

High level agenda

Intro & Motivation

Some hardware trends and new features

Some compiler stuff

A microbenchmark detour

Some more compiler stuff

Warmup, and what we can do about it

Putting it all together (and maybe some bragging)

©2016 Azul Systems, Inc.	 	 	 	 	 	

About me: Gil Tene
co-founder, CTO @Azul
Systems

Have been working on “think
different” GC and runtime
approaches since 2002

A Long history building
Virtual & Physical Machines,
Operating Systems,
Enterprise apps, etc…

At Azul we make JVMs that
dramatically improve response
time and latency behaviors

I also depress people by
demonstrating how terribly
wrong their latency
measurements are…

* working on real-world trash compaction issues, circa 2004

Speed

What is it good for?

©2017 Azul Systems, Inc.	 	 	 	 	 	

Are you fast?

©2017 Azul Systems, Inc.	 	 	 	 	 	

Are you fast when new code rolls out?

©2017 Azul Systems, Inc.	 	 	 	 	 	

Are you fast when it matters?

©2017 Azul Systems, Inc.	 	 	 	 	 	

Are you fast at Market Open?

©2017 Azul Systems, Inc.	 	 	 	 	 	

Are you fast when you actually trade?

©2017 Azul Systems, Inc.	 	 	 	 	 	

Are you reliably fast?

©2017 Azul Systems, Inc.	 	 	 	 	 	

??

What do you mean by “fast”?
Sp
ee
d

Time

©2017 Azul Systems, Inc.	 	 	 	 	 	

Sp
ee
d

Time

What do you mean by “fast”?

Speed in the Java world…

©2017 Azul Systems, Inc.	 	 	 	 	 	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Code	distribution	(by	optimization	level)

Interpreted	% Tier	1	(profiling)	% Optimized	%

Interpreted

Tier 1

(profiling) Optimized

©2017 Azul Systems, Inc.	 	 	 	 	 	

0.00

5.00

10.00

15.00

20.00

25.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Response	time
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized GC	Pause

©2017 Azul Systems, Inc.	 	 	 	 	 	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized

Some notes on modern servers

Code name Model Intro Date cores/chip

Nehalem EP Xeon 5500 March
2009 4

Westemere EP Xeon 5600 June 2010 6

Sandy Bridge EP E5-2600 March
2012 AVX 8

Ivy Bridge EP E5-2600 V2 Sep. 2013 12

Haswell EP E5-2600 V3 Sep. 2014 AVX2, BMI, BMI2 18

Broadwell EP E5-2600 V4 March
2016 TSX, HLE 22

Skylake SP Silver/Gold/… July 2017 AVX512 32

Some machine code zoom-in

A simple array summing loop

This is on X5690

(Westmere)

Uses SSE (128bit)

This is on E5-2690 v4

(Broadwell)

Uses AVX2 (256bit)

A conditional array cell addition loop

Traditional JVM JITs

per-element jumps,

2 elements per iteration

This is on E5-2690 v4

(Broadwell)

Vectorized with AVX2

32 elements per iteration

This is on Skylake SP

Vectorized with AVX512

64 elements per iteration

©2017 Azul Systems, Inc.	 	 	 	 	 	

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized

Improved optimization

Better JIT’ing is basically about speed

Compiler Stuff

Some simple compiler tricks

©2017 Azul Systems, Inc.	 	 	 	 	 	

Code can be reordered...

int doMath(int x, int y, int z) {

int a = x + y;

int b = x - y;

int c = z + x;

return a + b;

}

Can be reordered to:

int doMath(int x, int y, int z) {

int c = z + x;

int b = x - y;

int a = x + y;

return a + b;

}

©2017 Azul Systems, Inc.	 	 	 	 	 	

Dead code can be removed

int doMath(int x, int y, int z) {

int a = x + y;

int b = x - y;

int c = z + x;

return a + b;

}

Can be reduced to:

int doMath(int x, int y, int z) {

int a = x + y;

int b = x - y;

return a + b;

}

©2017 Azul Systems, Inc.	 	 	 	 	 	

Values can be propagated

int doMath(int x, int y, int z) {

int a = x + y;

int b = x - y;

int c = z + x;

return a + b;

}

Can be reduced to:

int doMath(int x, int y, int z) {

return x + y + x - y;

}

©2017 Azul Systems, Inc.	 	 	 	 	 	

Math can be simplified

int doMath(int x, int y, int z) {

int a = x + y;

int b = x - y;

int c = z + x;

return a + b;

}

Can be reduced to:

int doMath(int x, int y, int z) {

return x + x;

}

Some more compiler tricks

©2017 Azul Systems, Inc.	 	 	 	 	 	

propagation can affect flow
constants can be propagated to pre-compute results:

int computeBias() {

 int bias, val = 5;

if (val > 10) {

 bias = computeComplicatedBias(val);

else {

 bias = 1;

}

return bias;

}

Can be reduced to:

int computeBias() {

return 1;

}

©2017 Azul Systems, Inc.	 	 	 	 	 	

Reads can be cached
class Point { int x, y; }

int distanceRatio(Point a) {

int distanceTo = a.x - start;

int distanceAfter = end - a.x;

return distanceTo/distanceAfter;

}

Is (semantically) the same as

int distanceRatio(Point a) {

int x = a.x;

int distanceTo = x - start;

int distanceAfter = end - x;

return distanceTo/distanceAfter;

}

©2017 Azul Systems, Inc.	 	 	 	 	 	

Reads can be cached
class Trigger { boolean flag; }

void loopUntilFlagSet(Tigger a) {

while (!a.flag) {

loopcount++;

}

}

Is the same as:

void loopUntilFlagSet(Object a) {

boolean flagIsSet = a.flag;

while (!flagIsSet) {

loopcount++;

}

}

That’s what volatile is for...

©2017 Azul Systems, Inc.	 	 	 	 	 	

Writes can be eliminated

Intermediate values might never be visible

void updateDistance(Point a) {

int distance = 100;

a.x = distance;

a.x = distance * 2;

a.x = distance * 3;

}

Is the same as

void updateDistance(Point a) {

a.x = 300;

}

©2017 Azul Systems, Inc.	 	 	 	 	 	

Writes can be eliminated
Intermediate values might never be visible

void updateDistance(SomeObject a) {

a.visibleValue = 0;

for (int i = 0; i < 1000000; i++) {

a.internalValue = i;

}

a.visibleValue = a.internalValue;

}

Is the same as

void updateDistance(SomeObject a) {

a.internalValue = 1000000;

a.visibleValue = 1000000;

}

©2017 Azul Systems, Inc.	 	 	 	 	 	

Inlining...

public class Thing {

private int x;

public final int getX() { return x };

}

...

myX = thing.getX();

Is the same as

Class Thing {

int x;

}

...

myX = thing.x;

©2017 Azul Systems, Inc.	 	 	 	 	 	

Inlining is very powerful
inlining exposes other optimizations

int computeBias(int val) {

 int bias;

if (val > 10) {

 bias = computeComplicatedBias(val);

else {

 bias = 1;

}

return bias;

}

…

myBias = computeBias(5);

Can be reduced to:

myBias = 1;

A uBenchmark sidetrack

A simple loop uBenchmark (0)

Turns out this is “really fast”

As in: when count = 1,000,000 we complete

~500,000,000 calls per second

(for 5,000,000,000,000,000 iterations/sec)

A simple loop uBenchmark (1)

Still “impossibly fast”

It’s all “provably dead code”.

Compiler translates the method to a no-op

A simple loop uBenchmark (2)

Better?
No. Still “impossibly fast”.

Compiler returns count. No loop.

A simple loop uBenchmark (3)

Better?
Depends. On HotSpot and Zing C2, yes.

But Zing’s new Falcon compiler is smart enough

to recognize arithmetic series

A simple loop uBenchmark (4)

How about this?

Zing’s Falcon will even figure out this one.

(it returns zero)

A simple loop uBenchmark (5)

Seems to be complicated enough to defeat

current compilers…

©2017 Azul Systems, Inc.	 	 	 	 	 	

uBenchmarking Takeaways

uBenchmarking is “hard”. As in “very tricky”

You may not be measuring what you think you are

“Trickiness” can change over time, between versions

Sanity check EVERYTHING

Use jmh

Use jmh

Use jmh

And even then, suspect everything

Back to compiler stuff

Speculative compiler tricks

JIT compilers can do things that
static compilers can have

a hard time with…

©2017 Azul Systems, Inc.	 	 	 	 	 	

Untaken path example
“Never taken” paths can be optimized away with benefits:

int computeMagnitude(int val) {

if (val > 10) {

 bias = computeBias(val);

else {

 bias = 1;

}

return Math.log10(bias + 99);

}

When all values so far were <= 10 , could be compiled to:

int computeMagnitude(int val) {

if (val > 10) uncommonTrap();

return 2;

}

©2017 Azul Systems, Inc.	 	 	 	 	 	

Implicit Null Check example
All field and array access in Java is null checked

x = foo.x;

is (in equivalent required machine code):

if (foo == null)

 throw new NullPointerException();

x = foo.x;

But compiler can “hope” for non-nulls, and handle SEGV

<Point where later SEGV will appear to throw>

x = foo.x;

This is faster *IF* no nulls are encountered…

©2017 Azul Systems, Inc.	 	 	 	 	 	

Class Hierarchy Analysis (CHA)

Can perform global analysis on currently loaded code

Deduce stuff about inheritance, method overrides, etc.

Can make optimization decisions based on assumptions

Re-evaluate assumptions when loading new classes

Throw away code that conflicts with assumptions
before class loading makes them invalid

©2017 Azul Systems, Inc.	 	 	 	 	 	

Inlining works without “final”
public class Animal {

private int color;

public int getColor() { return color };

}

...

myColor = animal.getColor();

Is the same as

Class Animal {

int color;

}

...

myColor = animal.color;

As long as only one implementer of getColor() exists

THIS (CHA) is why

Java field accessors

are free & clean

©2017 Azul Systems, Inc.	 	 	 	 	 	

Inlining monomorphic sites
public class Animal {

private int color;

public int getColor() { return color };

}

...

myColor = animal.getColor();

Can be converted to:

...

if (animal.type != Dog) uncommonTrap();

myColor = animal.color;

Even if we have multiple conflicting implementors…

Deoptimization

©2017 Azul Systems, Inc.	 	 	 	 	 	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Code	distribution	(by	optimization	level)

Interpreted	% Tier	1	(profiling)	% Optimized	%

Interpreted

Tier 1

(profiling) Optimized

©2017 Azul Systems, Inc.	 	 	 	 	 	

Deoptimization:

Adaptive compilation is… adaptive

Micro-benchmarking is a black art

So is the art of the Warmup

Running code long enough to compile is just the start…

Deoptimizations can occur at any time

often occur after you *think* the code is warmed up.

Many potential causes

©2017 Azul Systems, Inc.	 	 	 	 	 	

Warmup often doesn’t cut it…
Common Example:

Trading system wants to have the first trade be fast

So run 20,000 “fake” messages through the system to warm up

let JIT compilers optimize, learn, and deopt before actual trades

But…

Code is written to do different things “if this is a fake message”

e.g. “Don’t send to the exchange if this is a fake message”

What really happens

JITs optimize for fake path, including speculatively assuming “fake”

First real message through causes a deopt...

©2017 Azul Systems, Inc.	 	 	 	 	 	

Java at Market Open

. . .

Market Open

©2017 Azul Systems, Inc.	 	 	 	 	 	

Java’s “Just In Time” Reality

Starts slow, learns fast

Lazy loading & initialization

Aggressively optimized for
the common case

(temporarily) Reverts to
slower execution to adapt

Warmup

Deoptimization

. . .

©2017 Azul Systems, Inc.	 	 	 	 	 	

Logging and “replaying” optimizations
Log optimization information

Record ongoing optimization decisions and stats

Record optimization dependencies

Establish “stable optimization state” at end of previous run

Read prior logs at startup

“Prime” JVM with knowledge of prior stable optimizations

Apply optimizations as their dependencies get resolved

Build workflow to promote confidence

Let you know if/when all optimizations have been applied

If some optimization haven’t been applied, let you know why…

©2017 Azul Systems, Inc.	 	 	 	 	 	

Java at “Load Start”

. . .

Load Start

Deoptimizationavoid
deoptimization

©2017 Azul Systems, Inc.	 	 	 	 	 	

Java at “Load Start”

. . .

Load Start

With de-optimization avoided

©2017 Azul Systems, Inc.	 	 	 	 	 	

Java at “Load Start”

. . .

Load StartWarmup?
Be Fast From

The Start

©2017 Azul Systems, Inc.	 	 	 	 	 	

. . .

Load Start

Java at “Load Start”

With pre-loading of
prior optimizations

©2017 Azul Systems, Inc.	 	 	 	 	 	

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized

Speed improvements

©2017 Azul Systems, Inc.	 	 	 	 	 	

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized Optimized	(Zing)

Better JIT’ingOptimization Replay

©2017 Azul Systems, Inc.	 	 	 	 	 	

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized Optimized	(Zing)

Better JIT’ingOptimization Replay

 GC
(without the pauses)

©2017 Azul Systems, Inc.	 	 	 	 	 	

C4 Garbage Collector

ELIMINATES Garbage Collection as a
concern for enterprise applications

©2015 Azul Systems, Inc.	 	 	 	 	 	

This is <Your App> on HotSpot

This is <Your App> on Zing

Any Questions?

A simple visual summary

©2017 Azul Systems, Inc.	 	 	 	 	 	

GC Tuning

©2017 Azul Systems, Inc.	 	 	 	 	 	

Java GC tuning is “hard”…
Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g

 -XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC

 -XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0

 -XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled

 -XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12

 -XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M

-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy

-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled

-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled

-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly

-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc …

A	few	more	GC	tuning	flags

Source:	Word	Cloud	created	by	Frank	Pavageau	in	his	Devoxx	FR	2012	presentaGon	Gtled	“Death	by	Pauses”

©2017 Azul Systems, Inc.	 	 	 	 	 	©2013 Azul Systems, Inc.	 	 	 	 	 	

The complete guide to
modern GC tuning

java -Xmx20g

java -Xmx10g

 java -Xmx5g

java -Xmx40g

©2017 Azul Systems, Inc.	 	 	 	 	 	

Cassandra under heavy load, Intel E5-2690 v4 server

Yup, that the 1 msec mark

©2017 Azul Systems, Inc.	 	 	 	 	 	

Warning: results may be too good

©2017 Azul Systems, Inc.	 	 	 	 	 	

A practical real-world example:

Improve Digital (Video Advertising)

Cassandra cluster running on 6x AWS i3.2xlarge

Approx. 80/20 write/read split

Data read and written with quorum consistency

6 client machines sending requests collocated in the same AZs

SLA requirements for read operations:

20ms at 99.9%

50ms at 99.99%

100ms at 99.998% (not a typo, last 9 hard to maintain on AWS)

HotSpot w/G1: can maintain ~4K TPS before SLA breach

Zing: can maintain ~21K TPS before SLA breach

QED…

©2017 Azul Systems, Inc.	 	 	 	 	 	

Transaction	 Load
Success	 Rate

©2017 Azul Systems, Inc.	 	 	 	 	 	

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized Optimized	(Zing)

FalconReadyNow

 C4

Start Fast, Go Fast, Stay Fast

Q & A
@giltene http://www.azul.com

http://stuff-gil-says.blogspot.com

http://latencytipoftheday.blogspot.com

http://www.azul.com
http://stuff-gil-says.blogspot.com
http://latencytipoftheday.blogspot.com

